cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344677 Number of partitions of n containing a prime number of primes and an arbitrary number of nonprimes.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 6, 9, 13, 20, 26, 36, 49, 68, 90, 120, 154, 201, 258, 330, 418, 532, 666, 834, 1041, 1290, 1592, 1958, 2404, 2935, 3588, 4345, 5278, 6366, 7692, 9215, 11096, 13230, 15853, 18831, 22477, 26580, 31620, 37247, 44145, 51851, 61247, 71681, 84445
Offset: 0

Views

Author

Paolo Xausa, May 26 2021

Keywords

Examples

			a(6) = 4 because there are 4 partitions of 6 that contain a prime number of primes (including repetitions). These partitions are [3,3], [3,2,1], [2,2,2], [2,2,1,1].
		

Crossrefs

Programs

  • Mathematica
    nterms=50;Table[Total[Map[If[PrimeQ[Count[#, _?PrimeQ]],1,0] &,IntegerPartitions[n]]],{n,0,nterms-1}]
    (* Second program: *)
    seq[n_] := Module[{p}, p = 1/Product[1 - If[PrimeQ[k], y*x^k, 0] + O[x]^n, {k, 2, n}]; CoefficientList[Sum[If[PrimeQ[k], Coefficient[p, y, k], 0], {k, 2, n}]/QPochhammer[x + O[x]^n]/(p /. y -> 1), x]];
    seq[50] (* Jean-François Alcover, May 27 2021, after Andrew Howroyd *)
  • PARI
    seq(n)={my(p=1/prod(k=2, n, 1 - if(isprime(k), y*x^k) + O(x*x^n))); Vec(sum(k=2, n, if(isprime(k), polcoef(p,k,y)))/eta(x+O(x*x^n))/subst(p,y,1), -(n+1))} \\ Andrew Howroyd, May 26 2021

A344715 Number of partitions of n containing a prime number of distinct primes and an arbitrary number of nonprimes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 5, 9, 12, 20, 27, 42, 56, 80, 107, 151, 195, 265, 342, 453, 577, 753, 949, 1220, 1525, 1930, 2398, 3006, 3701, 4594, 5625, 6922, 8426, 10291, 12455, 15117, 18203, 21955, 26326, 31576, 37689, 45002, 53498, 63581, 75313, 89125, 105199, 124056
Offset: 0

Views

Author

Paolo Xausa, May 27 2021

Keywords

Examples

			a(10) = 12 because there are 12 partitions of 10 that contain a prime number of primes (not counting repetitions). These partitions are [7,3] (containing 2 primes), [7,2,1] (containing 2 primes), [5,3,2] (containing 3 primes), [5,3,1,1] (containing 2 primes), [5,2,2,1] (containing 2 distinct primes), [5,2,1,1,1] (containing 2 primes), [4,3,2,1] (containing 2 primes), [3,3,2,2] (containing 2 distinct primes), [3,3,2,1,1] (containing 2 distinct primes), [3,2,2,2,1] (containing 2 distinct primes), [3,2,2,1,1,1] (containing 2 distinct primes) and [3,2,1,1,1,1,1] (containing 2 primes).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; expand(
          `if`(n=0 or i=1, 1, b(n, i-1)+`if`(isprime(i), x, 1)
              *add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> (p-> add(`if`(isprime(i), coeff(p, x, i), 0),
                 i=2..degree(p)))(b(n$2)):
    seq(a(n), n=0..49);  # Alois P. Heinz, Nov 14 2021
  • Mathematica
    nterms=50;Table[Total[Map[If[PrimeQ[Count[#, _?PrimeQ]],1,0] &,Map[DeleteDuplicates[#]&,IntegerPartitions[n],{1}]]],{n,0,nterms-1}]
  • PARI
    seq(n)={my(p=prod(k=2, n, 1 - y + y/(1 - if(isprime(k), x^k))  + O(x*x^n) ) ); Vec(sum(k=2, n, if(isprime(k), polcoef(p,k,y)))/eta(x+O(x*x^n))/subst(p, y, 1), -(n+1))} \\ Andrew Howroyd, May 27 2021

A344890 Number of partitions of prime(n) containing a prime number of distinct primes and an arbitrary number of nonprimes.

Original entry on oeis.org

0, 0, 1, 3, 20, 42, 151, 265, 753, 3006, 4594, 15117, 31576, 45002, 89125, 235501, 589613, 792426, 1871442, 3251293, 4261819, 9403682, 15690192, 33111688, 86520382, 137957345, 173655404, 273492399, 342231447, 532915031, 2380864800, 3601147053, 6628703864
Offset: 1

Views

Author

Paolo Xausa, Jun 01 2021

Keywords

Examples

			a(4) = 3 because there are 3 partitions of prime(4)=7 that contain a prime number of primes (not counting repetitions). These partitions are [5,2] (containing 2 primes), [3,2,2] (containing 2 unique primes) and [3,2,1,1] (containing 2 primes).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; expand(
          `if`(n=0 or i=1, 1, b(n, i-1)+`if`(isprime(i), x, 1)
              *add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> (p-> add(`if`(isprime(i), coeff(p, x, i), 0),
                 i=2..degree(p)))(b(ithprime(n)$2)):
    seq(a(n), n=1..33);  # Alois P. Heinz, Nov 14 2021
  • Mathematica
    nterms=22;Table[Total[Map[If[PrimeQ[Count[#, _?PrimeQ]],1,0] &,Map[DeleteDuplicates[#]&,IntegerPartitions[Prime[n]],{1}]]],{n,1,nterms}]

Formula

a(n) = A344715(A000040(n)).

Extensions

a(23)-a(33) from Alois P. Heinz, Jun 02 2021
Showing 1-3 of 3 results.