A343781 a(n) = Sum_{k=1..floor(n/2)} sigma_k(n-k), where sigma_k(n) is the sum of the k-th powers of the divisors of n.
0, 1, 3, 9, 17, 55, 111, 457, 943, 4962, 11148, 69526, 159402, 1161340, 2765874, 22829766, 55192956, 510771772, 1257880780, 12870681814, 32042113008, 359566186586, 904795505226, 11043196798176, 28002785395660, 369463867367567, 943392140873807, 13378621275148931
Offset: 1
Keywords
Examples
a(5) = 17; a(5) = Sum_{i=1..2} sigma_k(5-k) = sigma_1(4) + sigma_2(3) = (1+2+4) + (1^2+3^2) = 7 + 10 = 17.
Crossrefs
Cf. A245466.
Programs
-
Mathematica
Table[Sum[DivisorSigma[i, n - i], {i, Floor[n/2]}], {n, 30}]
-
PARI
a(n) = sum(k=1, n\2, sigma(n-k, k)); \\ Michel Marcus, Apr 29 2021