cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344434 a(n) = Sum_{d|n} sigma_d(d), where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 6, 29, 279, 3127, 47484, 823545, 16843288, 387440202, 10009769782, 285311670613, 8918294591103, 302875106592255, 11112685049470800, 437893920912789563, 18447025552998138393, 827240261886336764179, 39346558271492566413252, 1978419655660313589123981
Offset: 1

Views

Author

Wesley Ivan Hurt, May 19 2021

Keywords

Comments

Inverse Möbius transform of sigma_n(n) (A023887). - Wesley Ivan Hurt, Mar 31 2025

Examples

			a(6) = Sum_{d|6} sigma_d(d) = (1^1) + (1^2 + 2^2) + (1^3 + 3^3) + (1^6 + 2^6 + 3^6 + 6^6) = 47484.
		

Crossrefs

Cf. A023887 (sigma_n(n)), A245466, A321141, A334874, A343781.

Programs

  • Mathematica
    Table[Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 20}]
  • PARI
    a(n) = sumdiv(n, d, sigma(d, d)); \\ Michel Marcus, May 19 2021
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k))) \\ Seiichi Manyama, Jul 25 2022

Formula

If p is prime, a(p) = Sum_{d|p} sigma_d(d) = sigma_1(1) + sigma_p(p) = 1^1 + (1^p + p^p) = p^p + 2.
G.f.: Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k). - Seiichi Manyama, Jul 25 2022

A344480 a(n) = Sum_{d|n} d * sigma_d(d), where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 11, 85, 1103, 15631, 284795, 5764809, 134745175, 3486961642, 100097682141, 3138428376733, 107019534806039, 3937376385699303, 155577590686826319, 6568408813691811835, 295152408847835466855, 14063084452067724991027, 708238048886862707907062, 37589973457545958193355621, 2097154000001929438984022793
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} d * sigma_d(d) = 1*(1^1) + p*(1^p + p^p) = 1 + p + p^(p+1).
Inverse Möbius transform of n * sigma_n(n). - Wesley Ivan Hurt, Mar 31 2025

Examples

			a(6) = Sum_{d|6} d * sigma_d(d) = 1*(1^1) + 2*(1^2 + 2^2) + 3*(1^3 + 3^3) + 6*(1^6 + 2^6 + 3^6 + 6^6) = 284795.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k*DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 30}]
  • PARI
    a(n) = sumdiv(n, d, d*sigma(d, d)); \\ Michel Marcus, May 21 2021

A344787 a(n) = n * Sum_{d|n} sigma_d(d) / d, where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 7, 31, 287, 3131, 47527, 823551, 16843583, 387440266, 10009772937, 285311670623, 8918294639219, 302875106592267, 11112685050294387, 437893920912795941, 18447025553014982271, 827240261886336764195, 39346558271492953948522, 1978419655660313589123999
Offset: 1

Views

Author

Wesley Ivan Hurt, May 28 2021

Keywords

Comments

If p is prime, a(p) = p * Sum_{d|p} sigma_d(d) / d = p * (1 + (1^p + p^p)/p) = 1 + p + p^p.

Examples

			a(4) = 4 * Sum_{d|4} sigma_d(d) / d = 4 * ((1^1)/1 + (1^2 + 2^2)/2 + (1^4 + 2^4 + 4^4)/4) = 287.
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k])/k, {k, n}], {n, 20}]
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Dec 16 2022

Formula

G.f.: Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k)^2. - Seiichi Manyama, Dec 16 2022
Showing 1-3 of 3 results.