cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344480 a(n) = Sum_{d|n} d * sigma_d(d), where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 11, 85, 1103, 15631, 284795, 5764809, 134745175, 3486961642, 100097682141, 3138428376733, 107019534806039, 3937376385699303, 155577590686826319, 6568408813691811835, 295152408847835466855, 14063084452067724991027, 708238048886862707907062, 37589973457545958193355621, 2097154000001929438984022793
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} d * sigma_d(d) = 1*(1^1) + p*(1^p + p^p) = 1 + p + p^(p+1).
Inverse Möbius transform of n * sigma_n(n). - Wesley Ivan Hurt, Mar 31 2025

Examples

			a(6) = Sum_{d|6} d * sigma_d(d) = 1*(1^1) + 2*(1^2 + 2^2) + 3*(1^3 + 3^3) + 6*(1^6 + 2^6 + 3^6 + 6^6) = 284795.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k*DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 30}]
  • PARI
    a(n) = sumdiv(n, d, d*sigma(d, d)); \\ Michel Marcus, May 21 2021

A344787 a(n) = n * Sum_{d|n} sigma_d(d) / d, where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 7, 31, 287, 3131, 47527, 823551, 16843583, 387440266, 10009772937, 285311670623, 8918294639219, 302875106592267, 11112685050294387, 437893920912795941, 18447025553014982271, 827240261886336764195, 39346558271492953948522, 1978419655660313589123999
Offset: 1

Views

Author

Wesley Ivan Hurt, May 28 2021

Keywords

Comments

If p is prime, a(p) = p * Sum_{d|p} sigma_d(d) / d = p * (1 + (1^p + p^p)/p) = 1 + p + p^p.

Examples

			a(4) = 4 * Sum_{d|4} sigma_d(d) / d = 4 * ((1^1)/1 + (1^2 + 2^2)/2 + (1^4 + 2^4 + 4^4)/4) = 287.
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k])/k, {k, n}], {n, 20}]
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Dec 16 2022

Formula

G.f.: Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k)^2. - Seiichi Manyama, Dec 16 2022

A356076 a(n) = Sum_{k=1..n} sigma_k(k) * floor(n/k).

Original entry on oeis.org

1, 7, 36, 315, 3442, 50926, 874471, 17717759, 405157961, 10414927743, 295726598356, 9214021189459, 312089127781714, 11424774177252514, 449318695090042077, 18896344248088180470, 846136606134424944649, 40192694877626991357901
Offset: 1

Views

Author

Seiichi Manyama, Jul 25 2022

Keywords

Crossrefs

Partial sums of A344434.

Programs

  • Mathematica
    Table[Sum[DivisorSigma[k,k]Floor[n/k],{k,n}],{n,20}] (* Harvey P. Dale, Sep 08 2024 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, k)*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, sigma(d, d)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k))/(1-x))
    
  • Python
    from sympy import divisor_sigma
    def A356079(n): return n+sum(divisor_sigma(k,k)*(n//k) for k in range(2,n+1)) # Chai Wah Wu, Jul 25 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} sigma_d(d).
G.f.: (1/(1-x)) * Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k).
a(n) ~ n^n. - Vaclav Kotesovec, Aug 07 2022
Showing 1-3 of 3 results.