A343795 Number of Dumont permutations of the fourth kind of length 2n avoiding the pattern 312.
1, 1, 3, 10, 39, 174, 872, 4805, 28474, 178099, 1160173, 7803860, 53924841, 381640934, 2761331130, 20400560942, 153738854242, 1180631743440, 9229687049249, 73372263658451, 592476077260123, 4854377724124700, 40315729803287046, 339065862485375334, 2885324166565733641
Offset: 0
Examples
For n=2, a(2)=3 counts the permutations 1234, 1342, 1432.
References
- O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.
Links
- A. Burstein and O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, arXiv:2002.12189 [math.CO], 2020.
- A. Burstein, M. Josuat-Vergès, and W. Stromquist, New Dumont permutations, Pure Math. Appl. (Pu.M.A.) 21 (2010), no. 2, 177-206.
Crossrefs
Programs
-
PARI
seq(n)={my(h=sqrt(1-16*x + O(x*x^n)), F=sqrt((1-h)/(8*x)), G=(1-sqrt((1+h)/2))/(2*x), A=O(1)); forstep(k=n\3, 0, -1, my(f=Pol(F + O(x*x^k))); A = f/((1 - x*Pol(G + O(x^k)))^2 - x*f/(1 - x*Pol(G + O(x*x^k)) - x*f^2/(1 - x*A))) ); Vec(A + O(x*x^n))} \\ Andrew Howroyd, Apr 29 2021
Formula
Let F_k(x) be the truncation of the g.f. of A048990 to a polynomial of degree k. Let G_k(x) be the truncation of the g.f. of A024492 to a polynomial of degree k. Let G_{-1}(x) = 0. For k>=0, define A_k(x) recursively as follows: A_k(x) = F_k(x)/((1-x*G_{k-1}(x))^2-x*F_k(x)/(1-x*G_k(x)-x*F_k(x)^2/(1-x*A_{k+1}(x)))). Then A_0(x) is the g.f. of this sequence.
Extensions
Terms a(12) and beyond from Andrew Howroyd, Apr 29 2021
Comments