cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343813 Number of partitions of prime(n) containing at least one prime.

Original entry on oeis.org

1, 2, 5, 12, 48, 88, 269, 450, 1176, 4355, 6558, 20958, 43412, 61733, 122194, 324532, 820827, 1107647, 2652517, 4655220, 6133664, 13751210, 23192039, 49730098, 132657130, 213646624, 270244858, 429702432, 540212859, 848899870, 3905568236, 5952945182, 11078643138
Offset: 1

Views

Author

Paolo Xausa, Apr 30 2021

Keywords

Examples

			a(4) = 12 because there are 12 partitions of prime(4) = 7 that contain at least one prime. These partitions are [7], [5,2], [5,1,1], [4,3], [4,2,1], [3,3,1], [3,2,2], [3,2,1,1], [3,1,1,1,1], [2,2,2,1], [2,2,1,1,1], [2,1,1,1,1,1].
		

Crossrefs

Programs

  • Mathematica
    nterms=20;Table[Total[Map[If[Count[#, _?PrimeQ]>0,1,0] &,IntegerPartitions[Prime[n]]]],{n,1,nterms}]
  • PARI
    forprime(p=2,59,my(m=0); forpart(X=p, for(k=1,#X, if(isprime(X[k]),m++;break))); print1(m,", ")) \\ Hugo Pfoertner, Apr 30 2021
    
  • PARI
    seq(n)={my(p=primes(n), m=p[#p]); vecextract(Vec(1/eta(x+O(x*x^m)) - 1/prod(k=1, m, 1-if(!isprime(k), x^k) + O(x*x^m)), -m), p)} \\ Andrew Howroyd, Apr 30 2021
    
  • Python
    from sympy.utilities.iterables import partitions
    from sympy import sieve, prime
    def A343813(n):
        p = prime(n)
        pset = set(sieve.primerange(2,p+1))
        return sum(1 for d in partitions(p) if len(set(d)&pset) > 0) # Chai Wah Wu, May 01 2021

Formula

a(n) = A235945(A000040(n)).