A211210
a(n) = Sum_{k=0..n} binomial(n, k)*|S1(n, k)|.
Original entry on oeis.org
1, 1, 3, 16, 115, 1021, 10696, 128472, 1734447, 25937683, 424852351, 7554471156, 144767131444, 2971727661124, 65013102375404, 1509186299410896, 37032678328740751, 957376811266995031, 25999194631060525009, 739741591417352081464, 22000132609456951524051
Offset: 0
-
Table[Sum[Binomial[n, k] Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(n, k, 1))); \\ Michel Marcus, May 10 2021
A344053
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*Stirling2(n, k)*k!.
Original entry on oeis.org
1, 1, 0, -9, -40, 125, 3444, 18571, -241872, -5796711, -24387220, 1132278191, 25132445832, 8850583573, -10681029498972, -214099676807085, 1643397436986464, 176719161389104817, 2976468247699317468, -71662294521163070153, -4638920054290748840520, -55645074852328083377619
Offset: 0
-
a[n_] := Sum[(-1)^(n - k) * Binomial[n, k] * StirlingS2[n, k] * k!, {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, May 10 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*stirling(n, k, 2)*k!); \\ Michel Marcus, May 10 2021
Showing 1-2 of 2 results.
Comments