A317274
a(n) = Sum_{k=0..n} binomial(n,k)*Stirling1(n,k).
Original entry on oeis.org
1, 1, -1, -2, 19, -79, 76, 2640, -36945, 329371, -1861949, -4438774, 355714228, -7292531180, 109844527612, -1277006731104, 8181112825231, 124379387459175, -6806984421310187, 191750786928500050, -4289244423048443149, 80163499107525756105, -1146313133241947091420, 5494990440819210736560
Offset: 0
-
Table[Sum[Binomial[n, k] StirlingS1[n, k], {k, 0, n}], {n, 0, 23}]
-
a(n) = sum(k=0, n, binomial(n, k)*stirling(n, k, 1)); \\ Michel Marcus, Aug 07 2019
A211211
sum( C(n+1,k)*|S1(n,k)|, k=0..n). Binomial convolution of the Stirling numbers of the first kind.
Original entry on oeis.org
1, 2, 6, 30, 205, 1750, 17766, 207942, 2746815, 40315858, 649688072, 11387466948, 215440517656, 4371810051908, 94649397546302, 2176321870192342, 52938365091640943, 1357592080006964806, 36593629200726397630, 1033979281229140895582, 30552322294916306960625
Offset: 0
-
Table[Sum[Binomial[n + 1, k] Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 20}]
A047798
a(n) = Sum_{k=0..n} C(n,k)*Stirling2(n,k)^2.
Original entry on oeis.org
1, 1, 3, 31, 443, 9006, 241147, 7956579, 318973867, 15061651528, 824029357046, 51526959899570, 3636995712432667, 287053182699020609, 25126145438688593769, 2421761360666327615911, 255466264644678162575691, 29336098320197429601856772
Offset: 0
-
List([0..20], n-> Sum([0..n], k-> Binomial(n,k)*Stirling2(n,k)^2 )); # G. C. Greubel, Aug 07 2019
-
[(&+[Binomial(n,k)*StirlingSecond(n,k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
-
seq(add(binomial(n,k)*stirling2(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
-
Table[Sum[Binomial[n, k]*StirlingS2[n, k]^2, {k,0,n}], {n,0,20}] (* G. C. Greubel, Aug 07 2019 *)
-
{a(n) = sum(k=0,n, binomial(n,k)*stirling(n,k,2)^2)};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
-
[sum(binomial(n,k)*stirling_number2(n,k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
A187555
Triangle read by rows, defined by T(n,k)=binomial(n,k)*|Stirling1(n,k)|, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 9, 1, 0, 24, 66, 24, 1, 0, 120, 500, 350, 50, 1, 0, 720, 4110, 4500, 1275, 90, 1, 0, 5040, 37044, 56840, 25725, 3675, 147, 1, 0, 40320, 365904, 735392, 473830, 109760, 9016, 224, 1, 0, 362880, 3945024, 9922416, 8477784, 2828574, 381024, 19656, 324, 1, 0, 3628800, 46195920, 140724000, 151972800, 67869900, 13287330, 1134000, 39150, 450, 1
Offset: 0
Triangle begins:
1
0,1
0,2,1
0,6,9,1
0,24,66,24,1
0,120,500,350,50,1
0,720,4110,4500,1275,90,1
0,5040,37044,56840,25725,3675,147,1
0,40320,365904,735392,473830,109760,9016,224,1
-
seq(seq(binomial(n,k)*abs(combinat[stirling1](n,k)),k=0..n),n=0..8);
-
Flatten[Table[
Table[Binomial[n, k] Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 10}], 1]
-
create_list(binomial(n,k)*abs(stirling1(n,k)),n,0,10,k,0,n);
A247329
a(n) = Sum_{k=0..n} (-1)^(n-k) * C(n,k) * Stirling1(n+1, k+1).
Original entry on oeis.org
1, 2, 9, 58, 475, 4666, 53116, 684762, 9833391, 155341258, 2673209561, 49717424868, 992847765988, 21172798741316, 479921234767976, 11516219861132586, 291523666535143823, 7761036379846481206, 216699016885046232187, 6330257697841339549706, 193043926318644060255531
Offset: 0
Illustration of initial terms:
a(0) = 1*1 = 1 ;
a(1) = 1*1 + 1*1 = 2 ;
a(2) = 1*2 + 2*3 + 1*1 = 9 ;
a(3) = 1*6 + 3*11 + 3*6 + 1*1 = 58 ;
a(4) = 1*24 + 4*50 + 6*35 + 4*10 + 1*1 = 475 ;
a(5) = 1*120 + 5*274 + 10*225 + 10*85 + 5*15 + 1*1 = 4666 ;
a(6) = 1*720 + 6*1764 + 15*1624 + 20*735 + 15*175 + 6*21 + 1*1 = 53116 ;
a(7) = 1*5040 + 7*13068 + 21*13132 + 35*6769 + 35*1960 + 21*322 + 7*28 + 1*1 = 684762 ; ...
-
f:= proc(n) local k; add((-1)^(n-k)*binomial(n,k)*Stirling1(n+1,k+1),k=0..n); end proc:
map(f, [$0..30]); # Robert Israel, Aug 01 2019
-
Table[Sum[(-1)^(n-k) * Binomial[n,k] * StirlingS1[n+1, k+1],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 29 2014 *)
-
{Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))}
{a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n,k)*Stirling1(n+1, k+1))}
for(n=0,30,print1(a(n),", "))
A343841
a(n) = Sum{k=0..n} (-1)^(n-k)*binomial(n, k)*Stirling2(n, k).
Original entry on oeis.org
1, 1, -1, -5, 15, 56, -455, -237, 16947, -64220, -529494, 6833608, -8606015, -459331677, 4335744673, 6800310151, -518075832085, 4315086396640, 19931595013738, -812870258798156, 6648395876520816, 46852711038750520, -1752440325584024944, 15485712825845269456
Offset: 0
-
a := n -> add((-1)^(n-k)*binomial(n, k)*Stirling2(n, k), k=0..n):
seq(a(n), n = 0..24);
-
a[n_] := Sum[(-1)^(n - k) * Binomial[n, k] * StirlingS2[n, k], {k, 0, n}]; Array[a, 24, 0] (* Amiram Eldar, May 07 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*stirling(n, k, 2)); \\ Michel Marcus, May 07 2021
A387152
Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..n} binomial(k, j)*|Stirling1(n, j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 3, 3, 1, 0, 6, 7, 6, 4, 1, 0, 24, 23, 16, 10, 5, 1, 0, 120, 98, 57, 30, 15, 6, 1, 0, 720, 514, 257, 115, 50, 21, 7, 1, 0, 5040, 3204, 1407, 546, 205, 77, 28, 8, 1, 0, 40320, 23148, 9076, 3109, 1021, 336, 112, 36, 9, 1
Offset: 0
Array begins:
[0] 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, ...
[2] 0, 1, 3, 6, 10, 15, 21, ...
[3] 0, 2, 7, 16, 30, 50, 77, ...
[4] 0, 6, 23, 57, 115, 205, 336, ...
[5] 0, 24, 98, 257, 546, 1021, 1750, ...
[6] 0, 120, 514, 1407, 3109, 6030, 10696, ...
[7] 0, 720, 3204, 9076, 20695, 41330, 75356, ...
[8] 0, 5040, 23148, 67456, 157865, 323005, 602517, ...
[9] 0, 40320, 190224, 567836, 1358564, 2837549, 5396650, ...
-
A := (n, k) -> add(binomial(k, j)*abs(Stirling1(n, j)), j = 0..n):
seq(seq(A(n-k, k), k = 0..n), n = 0..10);
# Expanding rows or columns:
RowSer := n -> series((1+x)^k*GAMMA(x + n)/GAMMA(x), x, 12):
Trow := n -> k -> coeff(RowSer(n), x, k):
ColSer := n -> series(orthopoly:-L(n, log(1 - x)), x, 12):
Tcol := k -> n -> n! * coeff(ColSer(k), x, n):
seq(lprint(seq(Trow(n)(k), k = 0..7)), n = 0..9);
seq(lprint(seq(Tcol(k)(n), n = 0..7)), k = 0..9);
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if n == 0: return 1
if k == 0: return 0
return (n - 1) * T(n - 1, k) + T(n, k - 1) - (n - 2) * T(n - 1, k - 1)
for n in range(7): print([T(n, k) for k in range(7)])
A271700
Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*S1(k,j), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 16, 1, 4, 10, 30, 115, 1, 5, 15, 50, 205, 1021, 1, 6, 21, 77, 336, 1750, 10696, 1, 7, 28, 112, 518, 2814, 17766, 128472, 1, 8, 36, 156, 762, 4308, 28050, 207942, 1734447, 1, 9, 45, 210, 1080, 6342, 42528, 322860, 2746815, 25937683
Offset: 0
Triangle starts:
[1]
[1, 1]
[1, 2, 3]
[1, 3, 6, 16]
[1, 4, 10, 30, 115]
[1, 5, 15, 50, 205, 1021]
[1, 6, 21, 77, 336, 1750, 10696]
[1, 7, 28, 112, 518, 2814, 17766, 128472]
-
T := (n,k) -> add(abs(Stirling1(k,j))*binomial(-j-1,-n-1)*(-1)^(n-j),j=0..n);
seq(seq(T(n,k), k=0..n), n=0..9);
-
Flatten[Table[Sum[(-1)^(n-j)Binomial[-j-1,-n-1] Abs[StirlingS1[k,j]],{j,0,n}], {n,0,9},{k,0,n}]]
A344053
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*Stirling2(n, k)*k!.
Original entry on oeis.org
1, 1, 0, -9, -40, 125, 3444, 18571, -241872, -5796711, -24387220, 1132278191, 25132445832, 8850583573, -10681029498972, -214099676807085, 1643397436986464, 176719161389104817, 2976468247699317468, -71662294521163070153, -4638920054290748840520, -55645074852328083377619
Offset: 0
-
a[n_] := Sum[(-1)^(n - k) * Binomial[n, k] * StirlingS2[n, k] * k!, {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, May 10 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*stirling(n, k, 2)*k!); \\ Michel Marcus, May 10 2021
Showing 1-9 of 9 results.
Comments