cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356546 Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 20, 60, 60, 20, 70, 280, 420, 280, 70, 252, 1260, 2520, 2520, 1260, 252, 924, 5544, 13860, 18480, 13860, 5544, 924, 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432, 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870
Offset: 0

Views

Author

Peter Luschny, Aug 12 2022

Keywords

Comments

The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506.

Examples

			Triangle T(n, k) begins:
[0]     1;
[1]     2,      2;
[2]     6,     12,      6;
[3]    20,     60,     60,     20;
[4]    70,    280,    420,    280,     70;
[5]   252,   1260,   2520,   2520,   1260,    252;
[6]   924,   5544,  13860,  18480,  13860,   5544,    924;
[7]  3432,  24024,  72072, 120120, 120120,  72072,  24024,   3432;
[8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870;
		

Crossrefs

cf. A000984, A059304 (row sums, see also A343842), A265609 (rising factorial).
Cf. A003506, A173018 (Eulerian numbers), A000108, A000897 (central terms).

Programs

  • Maple
    A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!):
    for n from 0 to 8 do seq(A356546(n, k), k=0..n) od;
  • Mathematica
    T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* Michael Somos, Aug 18 2022 *)
  • PARI
    {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* Michael Somos, Aug 18 2022 */
  • SageMath
    def A356546(n, k):
        return rising_factorial(n+1,n) // (factorial(k) * factorial(n-k))
    for n in range(9): print([A356546(n, k) for k in range(n+1)])
    

Formula

Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2).
G.f.: 1/sqrt(1 - 4*x*(y + 1)). - Vladimir Kruchinin, Feb 15 2023
Showing 1-1 of 1 results.