A344035 Numbers that are the sum of five positive cubes in exactly four ways.
1252, 1376, 1461, 1522, 1548, 1585, 1590, 1646, 1702, 1709, 1737, 1739, 1772, 1798, 1802, 1810, 1864, 1889, 1954, 1987, 2006, 2033, 2081, 2096, 2152, 2160, 2225, 2241, 2251, 2276, 2313, 2322, 2339, 2341, 2367, 2374, 2377, 2416, 2423, 2456, 2458, 2465, 2467, 2512, 2521, 2528, 2530, 2537, 2540, 2549, 2556, 2582
Offset: 1
Keywords
Examples
1461 is a member of this sequence because 1461 = 1^3 + 1^3 + 1^3 + 9^3 + 9^3 = 1^3 + 1^3 + 4^3 + 4^3 + 11^3 = 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 6^3 + 6^3 + 7^3 + 7^3 + 7^3
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
s5pcQ[n_]:=Length[Select[PowersRepresentations[n,5,3],FreeQ[#,0]&]]==4; Select[Range[ 3000],s5pcQ] (* Harvey P. Dale, Sep 15 2024 *)
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1,50)] for pos in cwr(power_terms,5): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k,v in keep.items() if v == 4]) for x in range(len(rets)): print(rets[x])
Comments