cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344035 Numbers that are the sum of five positive cubes in exactly four ways.

Original entry on oeis.org

1252, 1376, 1461, 1522, 1548, 1585, 1590, 1646, 1702, 1709, 1737, 1739, 1772, 1798, 1802, 1810, 1864, 1889, 1954, 1987, 2006, 2033, 2081, 2096, 2152, 2160, 2225, 2241, 2251, 2276, 2313, 2322, 2339, 2341, 2367, 2374, 2377, 2416, 2423, 2456, 2458, 2465, 2467, 2512, 2521, 2528, 2530, 2537, 2540, 2549, 2556, 2582
Offset: 1

Views

Author

David Consiglio, Jr., May 07 2021

Keywords

Comments

Differs from A344034 at term 13 because 1765 = 1^3 + 1^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 9^3 + 10^3 = 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 8^3 + 10^3

Examples

			1461 is a member of this sequence because 1461 = 1^3 + 1^3 + 1^3 + 9^3 + 9^3 = 1^3 + 1^3 + 4^3 + 4^3 + 11^3 = 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 6^3 + 6^3 + 7^3 + 7^3 + 7^3
		

Crossrefs

Programs

  • Mathematica
    s5pcQ[n_]:=Length[Select[PowersRepresentations[n,5,3],FreeQ[#,0]&]]==4; Select[Range[ 3000],s5pcQ] (* Harvey P. Dale, Sep 15 2024 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])