cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A344044 a(n) = Sum_{d|n} sigma(d)^3.

Original entry on oeis.org

1, 28, 65, 371, 217, 1820, 513, 3746, 2262, 6076, 1729, 24115, 2745, 14364, 14105, 33537, 5833, 63336, 8001, 80507, 33345, 48412, 13825, 243490, 30008, 76860, 66262, 190323, 27001, 394940, 32769, 283584, 112385, 163324, 111321, 839202, 54873, 224028, 178425, 812882, 74089
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1, #]^3 &]; Array[a, 41] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^3);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)^3*x^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} sigma(k)^3 * x^k/(1 - x^k).
If p is prime, a(p) = 1 + (p+1)^3.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^10*zeta(3)/194400) * Product_{p prime} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 1.6422194986... . - Amiram Eldar, Nov 20 2022

A344060 a(n) = Sum_{d|n} sigma(d)^n.

Original entry on oeis.org

1, 10, 65, 2483, 7777, 2990810, 2097153, 2568661988, 10604761518, 3570527751850, 743008370689, 232227195048256531, 793714773254145, 21035724521219881850, 504857283427304833025, 727429690188773950335429, 2185911559738696531969, 43567528891100073055151954340, 5242880000000000000000001
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1 , #]^n &]; Array[a, 19] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^n);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k)*x)^k/(1-(sigma(k)*x)^k)))

Formula

G.f.: Sum_{k >= 1} (sigma(k) * x)^k/(1 - (sigma(k) * x)^k).
If p is prime, a(p) = 1 + (p+1)^p.

A344081 a(n) = Sum_{d|n} tau(d)^d, where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 5, 9, 86, 33, 4109, 129, 65622, 19692, 1048613, 2049, 2176786526, 8193, 268435589, 1073741865, 152587956247, 131073, 101559956692208, 524289, 3656158441111670, 4398046511241, 17592186046469, 8388609, 4722366482871822065758
Offset: 1

Views

Author

Seiichi Manyama, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[0, #]^# &]; Array[a, 24] (* Amiram Eldar, May 09 2021 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d)^d);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (numdiv(k)*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} (tau(k) * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + 2^p.

A359054 a(n) = Sum_{d|n} sigma_d(d)^d.

Original entry on oeis.org

1, 26, 21953, 5554571867, 298500366308609377, 11413459460309090640625021978, 256925761343390078522337875137209684721665, 6476754651706496208416137876625690606552226172163824554588
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[#, #]^# &]; Array[a, 8] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, d)^d);
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k, k)*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} (sigma_k(k) * x)^k/(1 - x^k).
Showing 1-4 of 4 results.