cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A344043 a(n) = n * Sum_{d|n} sigma(d)^3 / d.

Original entry on oeis.org

1, 29, 67, 401, 221, 1943, 519, 4177, 2398, 6409, 1739, 26867, 2757, 15051, 14807, 38145, 5849, 69542, 8019, 88621, 34773, 50431, 13847, 279859, 30896, 79953, 71194, 208119, 27029, 429403, 32799, 326337, 116513, 169621, 114699, 961598, 54909, 232551, 184719, 923117, 74129, 1008417, 85227, 697339
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n * DivisorSum[n, DivisorSigma[1, #]^3/# &]; Array[a, 44] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = n*sumdiv(n, d, sigma(d)^3/d);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)^3*x^k/(1-x^k)^2))

Formula

G.f.: Sum_{k >= 1} sigma(k)^3 * x^k/(1 - x^k)^2.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^6*zeta(3)^2/2160) * Product_{p prime} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 1.8238925519... . - Amiram Eldar, Nov 20 2022

A344047 a(n) = Sum_{d|n} sigma(d)^d.

Original entry on oeis.org

1, 10, 65, 2411, 7777, 2986058, 2097153, 2562893036, 10604499438, 3570467234410, 743008370689, 232218265092200875, 793714773254145, 21035720123170684938, 504857282956046114465, 727423121747187826721517, 2185911559738696531969, 43567528752021332763809905512, 5242880000000000000000001
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1, #]^# &]; Array[a, 19] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^d);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k)*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} (sigma(k) * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + (p+1)^p.

A226565 Numbers k such that Sum_{d|k} sigma(d)^3 is a multiple of k.

Original entry on oeis.org

1, 2, 14, 32, 39, 42, 78, 96, 105, 117, 126, 133, 189, 195, 210, 224, 234, 266, 288, 378, 390, 399, 465, 480, 546, 585, 672, 793, 798, 930, 975, 1170, 1197, 1248, 1365, 1470, 1586, 1638, 1862, 1950, 1995, 2016, 2379, 2394, 2646, 2730, 3255, 3360, 3393, 3591
Offset: 1

Views

Author

Paolo P. Lava, Jun 11 2013

Keywords

Examples

			Divisors of 189 are 1, 3, 7, 9, 21, 27, 63, 189, sigma(1) = 1, sigma(3) = 4, sigma(7) = 8, sigma(9) = 13, sigma(21) = 32, sigma(27) = 40, sigma(63) = 104, sigma(189) = 320. (1^3 + 4^3 + 8^3 + 13^3 + 32^3 + 40^3 + 104^3 + 320^3) / 189 = 179854.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA226565:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=[op(divisors(n))]; b:=add(sigma(a[k])^3/n,k=1..nops(a));
    if type(b,integer) then print(n); fi; od; end: ListA226565 (10^6);
  • Mathematica
    Select[Range[4000],Divisible[Total[DivisorSigma[1,#]^3&/@Divisors[#]],#]&] (* Harvey P. Dale, Sep 17 2019 *)
    s[n_] := DivisorSum[n, DivisorSigma[1, #]^3 &]; Select[Range[3600], Divisible[s[#], #] &] (* Amiram Eldar, Jul 01 2022 *)

A344060 a(n) = Sum_{d|n} sigma(d)^n.

Original entry on oeis.org

1, 10, 65, 2483, 7777, 2990810, 2097153, 2568661988, 10604761518, 3570527751850, 743008370689, 232227195048256531, 793714773254145, 21035724521219881850, 504857283427304833025, 727429690188773950335429, 2185911559738696531969, 43567528891100073055151954340, 5242880000000000000000001
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1 , #]^n &]; Array[a, 19] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^n);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k)*x)^k/(1-(sigma(k)*x)^k)))

Formula

G.f.: Sum_{k >= 1} (sigma(k) * x)^k/(1 - (sigma(k) * x)^k).
If p is prime, a(p) = 1 + (p+1)^p.
Showing 1-4 of 4 results.