cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344080 a(n) = Sum_{d|n} tau(d)^n, where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 5, 9, 98, 33, 4225, 129, 72354, 20196, 1050625, 2049, 2194099186, 8193, 268468225, 1073807361, 156925970179, 131073, 101629064089930, 524289, 3657261440572306, 4398050705409, 17592194433025, 8388609, 4727105427440383342818, 847322163876, 4503599761588225
Offset: 1

Views

Author

Seiichi Manyama, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[0, #]^n &]; Array[a, 26] (* Amiram Eldar, May 09 2021 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d)^n);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (numdiv(k)*x)^k/(1-(numdiv(k)*x)^k)))

Formula

G.f.: Sum_{k >= 1} (tau(k) * x)^k/(1 - (tau(k) * x)^k).
If p is prime, a(p) = 1 + 2^p.

A359052 a(n) = Sum_{d|n} sigma_d(d)^n.

Original entry on oeis.org

1, 26, 21953, 5554572467, 298500366308609377, 11413459460309090641106905930, 256925761343390078522337875137209684721665, 6476754651706496208416137876625690606583079440495100502628
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[#, #]^n &]; Array[a, 8] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, d)^n);
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k, k)*x)^k/(1-(sigma(k, k)*x)^k)))

Formula

G.f.: Sum_{k >= 1} (sigma_k(k) * x)^k/(1 - (sigma_k(k) * x)^k).

A344061 a(n) = Sum_{d|n} sigma(d)^(n/d).

Original entry on oeis.org

1, 4, 5, 17, 7, 56, 9, 146, 78, 298, 13, 1501, 15, 2276, 1265, 9219, 19, 25716, 21, 77519, 16929, 177328, 25, 739582, 7808, 1594562, 264382, 5611241, 31, 15699452, 33, 48863172, 4196081, 129140542, 312753, 447589422, 39, 1162261928, 67111665, 3771805472, 43, 10764897556, 45
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1 , #]^(n/#) &]; Array[a, 43] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^(n/d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-sigma(k)*x^k)))

Formula

G.f.: Sum_{k >= 1} sigma(k) * x^k/(1 - sigma(k) * x^k).
If p is prime, a(p) = 2 + p.
Showing 1-3 of 3 results.