A344202 Primes p such that gcd(ord_p(2), ord_p(3)) = 1.
683, 599479, 108390409, 149817457, 666591179, 2000634731, 4562284561, 14764460089, 24040333283, 2506025630791, 5988931115977
Offset: 1
Links
- Sofia Lacerda, C++ program (github).
- MathOverflow, Solve this Diophantine equation (2^x-1)(3^y-1)=2z^2
- Mathematics Stack Exchange, For all alpha,beta in N, are there only finitely many primes so that gcd(ordp(alpha),ordp(beta))=1?, 2021.
- Wikipedia, Multiplicative order.
- Wikipedia, P-adic_valuation.
Programs
-
Mathematica
Select[Range[10^6], PrimeQ[#] && CoprimeQ[MultiplicativeOrder[2, #], MultiplicativeOrder[3, #]] &] (* Amiram Eldar, May 11 2021 *)
-
PARI
isok(p) = isprime(p) && (gcd(znorder(Mod(2, p)), znorder(Mod(3, p))) == 1); \\ Michel Marcus, May 11 2021
-
Python
from sympy.ntheory import n_order from sympy import gcd, nextprime A344202_list, p = [], 5 while p < 10**9: if gcd(n_order(2,p),n_order(3,p)) == 1: A344202_list.append(p) p = nextprime(p) # Chai Wah Wu, May 12 2021
Extensions
a(3)-a(5) from Michel Marcus, May 11 2021
a(6)-a(8) from Amiram Eldar, May 11 2021
a(9) from Daniel Suteu, May 16 2021
a(10) from Sofia Lacerda, Jul 07 2021
a(11) from Sofia Lacerda, Aug 03 2021
Comments