cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sofia Lacerda

Sofia Lacerda's wiki page.

Sofia Lacerda has authored 4 sequences.

A353701 Denominator of squared radius of smallest circle passing through exactly n integral points.

Original entry on oeis.org

4, 18, 2, 18, 4, 242, 2, 18, 4, 242, 2, 98, 4, 18, 2, 578, 4, 578, 2, 242, 242, 98, 2, 18, 98, 18, 2, 722, 4, 98, 2, 162
Offset: 2

Author

Sofia Lacerda, May 04 2022

Keywords

Comments

Schinzel proved such a circle always exists, and the square of the radius of a circle passing through 3 integral points is always rational so the sequence is well-defined.

Examples

			For n=3 a minimal circle is (x - 1/6)^2 + (y - 1/6)^2 = 25/18.
		

Crossrefs

Numerators are A353700.

Extensions

Data corrected by Sean A. Irvine, Jul 19 2022
a(29)-a(33) from Jim Randell, Jan 10 2023

A353700 Numerator of squared radius of smallest circle passing through exactly n integral points.

Original entry on oeis.org

1, 25, 1, 625, 25, 138125, 5, 4225, 625, 801125, 25, 1221025, 15625, 105625, 65, 185870425, 4225, 185870425, 625, 29641625, 29641625, 30525625, 325, 17850625, 35409725, 1221025, 15625, 3159797225, 105625, 763140625, 1105, 1346691125
Offset: 2

Author

Sofia Lacerda, May 04 2022

Keywords

Comments

Schinzel proved such a circle always exists, and the square of the radius of a circle passing through 3 integral points is always rational so the sequence is well-defined.

Examples

			For n=3 a minimal circle is (x - 1/6)^2 + (y - 1/6)^2 = 25/18.
		

Crossrefs

Denominators are A353701.

Extensions

Data corrected by Sean A. Irvine, Jul 17 2022
a(29)-a(33) from Jim Randell, Jan 10 2023

A346587 Value of k for incrementally largest value of k/A002322(k), where A002322 is the Carmichael function.

Original entry on oeis.org

1, 2, 6, 8, 12, 24, 60, 80, 120, 240, 504, 1040, 1092, 1170, 1260, 1365, 1456, 1560, 1638, 1680, 1820, 1872, 2184, 2340, 2520, 2730, 3120, 3276, 3640, 4095, 4368, 4680, 5040, 5460, 6552, 7280, 8190, 9360, 10920, 13104, 16380, 21840, 32760, 65520
Offset: 1

Author

Sofia Lacerda, Jul 24 2021

Keywords

Crossrefs

Cf. A002322.

Programs

  • Mathematica
    max=0;lst={};Do[t=k/CarmichaelLambda@k;If[t>max,AppendTo[lst,k];max=t],{k,100000}];lst (* Giorgos Kalogeropoulos, Jul 26 2021 *)
  • PARI
    f(n) = lcm(znstar(n)[2]); \\ A002322
    lista(nn) = {my(m=0, x, list=List()); for (n=1, nn, if ((x = n/f(n)) > m, m = x; listput(list, n));); Vec(list);} \\ Michel Marcus, Aug 04 2021

A344202 Primes p such that gcd(ord_p(2), ord_p(3)) = 1.

Original entry on oeis.org

683, 599479, 108390409, 149817457, 666591179, 2000634731, 4562284561, 14764460089, 24040333283, 2506025630791, 5988931115977
Offset: 1

Author

Sofia Lacerda, May 11 2021

Keywords

Comments

'ord_p' here means the multiplicative order, not to be confused with the p-adic order that is also often denoted by ord_p.
Related to Diophantine equations of the form (2^x-1)*(3^y-1) = n*z^2.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], PrimeQ[#] && CoprimeQ[MultiplicativeOrder[2, #], MultiplicativeOrder[3, #]] &] (* Amiram Eldar, May 11 2021 *)
  • PARI
    isok(p) = isprime(p) && (gcd(znorder(Mod(2, p)), znorder(Mod(3, p))) == 1); \\ Michel Marcus, May 11 2021
    
  • Python
    from sympy.ntheory import n_order
    from sympy import gcd, nextprime
    A344202_list, p = [], 5
    while p < 10**9:
        if gcd(n_order(2,p),n_order(3,p)) == 1:
            A344202_list.append(p)
        p = nextprime(p) # Chai Wah Wu, May 12 2021

Extensions

a(3)-a(5) from Michel Marcus, May 11 2021
a(6)-a(8) from Amiram Eldar, May 11 2021
a(9) from Daniel Suteu, May 16 2021
a(10) from Sofia Lacerda, Jul 07 2021
a(11) from Sofia Lacerda, Aug 03 2021