A344257 Number of partitions of n into 10 semiprime parts.
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 10, 8, 13, 13, 18, 17, 20, 19, 25, 28, 33, 33, 38, 40, 50, 52, 59, 63, 71, 75, 86, 94, 105, 110, 124, 131, 150, 159, 174, 189, 205, 217, 242, 264, 288, 303, 327, 354, 388, 414, 443, 476, 511, 547, 594, 641
Offset: 40
Keywords
Links
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 0, `if`(numtheory[bigomega](n)=2, n, h(n-1))) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, `if`(i>n, 0, x*b(n-i, h(min(n-i, i))))+b(n, h(i-1)))), x, 11) end: a:= n-> coeff(b(n, h(n)), x, 10): seq(a(n), n=40..120); # Alois P. Heinz, May 26 2021
-
Mathematica
h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]]; b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 11}]; a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 10}]; Table[a[n], {n, 40, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz *)
Formula
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} [Omega(r) = Omega(q) = Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p-q-r) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^10] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 19 2021
Extensions
a(83)-a(103) from Alois P. Heinz, May 18 2021