cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344257 Number of partitions of n into 10 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 10, 8, 13, 13, 18, 17, 20, 19, 25, 28, 33, 33, 38, 40, 50, 52, 59, 63, 71, 75, 86, 94, 105, 110, 124, 131, 150, 159, 174, 189, 205, 217, 242, 264, 288, 303, 327, 354, 388, 414, 443, 476, 511, 547, 594, 641
Offset: 40

Views

Author

Wesley Ivan Hurt, May 13 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=10 of A344447.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
         `if`(i>n, 0, x*b(n-i, h(min(n-i, i))))+b(n, h(i-1)))), x, 11)
        end:
    a:= n-> coeff(b(n, h(n)), x, 10):
    seq(a(n), n=40..120);  # Alois P. Heinz, May 26 2021
  • Mathematica
    h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 11}];
    a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 10}];
    Table[a[n], {n, 40, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} [Omega(r) = Omega(q) = Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p-q-r) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^10] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 19 2021

Extensions

a(83)-a(103) from Alois P. Heinz, May 18 2021