cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344447 Number T(n,k) of partitions of n into k semiprimes; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 2, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, 0, 1, 2, 1, 0, 0, 2, 3, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 1, 2, 3, 2, 1, 0, 0, 1, 3, 3, 1, 0, 0, 2, 3, 4, 2, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, May 19 2021

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains in each row n only the terms for k=0 and then up to the last positive T(n,k) (if it exists).

Examples

			Triangle T(n,k) begins:
  1 ;
  0 ;
  0 ;
  0 ;
  0, 1 ;
  0    ;
  0, 1 ;
  0    ;
  0, 0, 1 ;
  0, 1    ;
  0, 1, 1 ;
  0       ;
  0, 0, 1, 1 ;
  0, 0, 1    ;
  0, 1, 1, 1 ;
  0, 1, 1    ;
  0, 0, 1, 1, 1 ;
  0, 0, 0, 1    ;
  0, 0, 2, 2, 1 ;
  0, 0, 2, 1    ;
  0, 0, 2, 1, 1, 1 ;
  ...
		

Crossrefs

Row sums give A101048.
T(4n,n) gives A000012.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
         `if`(i>n, 0, expand(x*b(n-i, h(min(n-i, i)))))+b(n, h(i-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n, h(n))):
    seq(T(n), n=0..32);
  • Mathematica
    h[n_] := h[n] = If[n == 0, 0,
         If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         If[i > n, 0, Expand[x*b[n-i, h[Min[n-i, i]]]]] + b[n, h[i-1]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, 0, Max[0, Exponent[#, x]]}]&[b[n, h[n]]];
    Table[T[n], {n, 0, 32}] // Flatten (* Jean-François Alcover, Aug 19 2021, after Alois P. Heinz *)

Formula

T(n,k) = [x^n y^k] 1/Product_{j>=1} (1-y*x^A001358(j)).
Sum_{k>0} k * T(n,k) = A281617(n).

A344255 Number of partitions of n into 8 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 9, 8, 12, 12, 17, 16, 18, 18, 22, 25, 30, 29, 33, 36, 44, 45, 51, 54, 59, 63, 71, 78, 87, 90, 99, 106, 120, 124, 136, 147, 157, 166, 182, 199, 216, 223, 238, 259, 280, 298, 314
Offset: 32

Views

Author

Wesley Ivan Hurt, May 12 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=8 of A344447.

Programs

  • Mathematica
    h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 9}];
    a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 8}];
    Table[a[n], {n, 32, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz in A344257 *)

Formula

a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} [Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

A344256 Number of partitions of n into 9 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 10, 8, 12, 13, 18, 16, 19, 19, 24, 27, 31, 31, 37, 38, 46, 50, 57, 58, 65, 71, 80, 86, 96, 102, 115, 119, 134, 146, 160, 167, 181, 197, 217, 232, 252, 269, 290, 306, 333, 364, 387, 407, 434, 474, 512, 541
Offset: 36

Views

Author

Wesley Ivan Hurt, May 13 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=9 of A344447.

Programs

  • Mathematica
    h[n_] := h[n] = If[n == 0, 0,If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 10}];
    a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 9}];
    Table[a[n], {n, 36, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz in A344257 *)

Formula

a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} [Omega(q) = Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p-q) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^9] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

Extensions

More terms from Alois P. Heinz, May 18 2021
Showing 1-3 of 3 results.