cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A101048 Number of partitions of n into semiprimes (a(0) = 1 by convention).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 2, 3, 1, 5, 3, 5, 4, 7, 4, 9, 7, 10, 8, 13, 10, 17, 13, 18, 17, 25, 21, 29, 25, 34, 34, 43, 37, 51, 49, 61, 59, 73, 69, 89, 87, 103, 103, 124, 122, 148, 149, 172, 176, 206, 208, 244, 248, 281, 293, 337, 344, 391, 405, 456, 479, 537, 553
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 28 2004

Keywords

Comments

Semiprime analog of A000607. a(n) <= A002095(n). - Jonathan Vos Post, Oct 01 2007
Das, Robles, Zaharescu, & Zeindler give an asymptotic formula, see Links. - Charles R Greathouse IV, Jan 20 2023

Examples

			a(12) = #{6 + 6, 4 + 4 + 4} = #{2 * (2*3), 3 * (2*2)} = 2.
		

Crossrefs

Programs

  • Haskell
    a101048 = p a001358_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 21 2014
    
  • Maple
    g:=1/product(product(1-x^(ithprime(i)*ithprime(j)),i=1..j),j=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..71); # Emeric Deutsch, Apr 04 2006
    # second Maple program:
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
         `if`(i>n, 0, b(n-i, h(min(n-i, i))))+b(n, h(i-1))))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 19 2021
  • Mathematica
    terms = 100; CoefficientList[1/Product[1 - x^(Prime[i] Prime[j]), {i, 1, PrimePi[Ceiling[terms/2]]}, {j, 1, i}] + O[x]^terms, x] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    issemi(n)=if(n<4, return(0)); forprime(p=2,97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2
    allsemi(v)=for(i=1,#v, if(!issemi(v[i]), return(0))); 1
    a(n)=my(s); if(n<4, return(n==0)); forpart(k=n, if(allsemi(k), s++),[4,n]); s \\ Charles R Greathouse IV, Jan 20 2023

Formula

G.f.: 1/product(product(1-x^(p(i)p(j)), i = 1..j),j = 1..infinity), p(k) is the k-th prime. - Emeric Deutsch, Apr 04 2006

Extensions

a(0) set to 1 by N. J. A. Sloane, Nov 23 2007

A072931 Number of ways to write n as a sum of 2 semiprimes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 2, 2, 2, 1, 0, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 0, 1, 3, 3, 2, 1, 3, 3, 2, 3, 4, 4, 2, 1, 4, 5, 3, 3, 1, 3, 3, 2, 5, 3, 2, 2, 5, 6, 6, 1, 3, 5, 3, 4, 4, 5, 3, 3, 6, 7, 5, 3, 3, 4, 4, 4, 5, 5, 3, 2, 7, 7, 2, 4, 4, 5, 4, 6, 8, 6, 3, 3, 8, 7, 7, 4, 6, 8, 6, 5, 7, 7, 2
Offset: 0

Views

Author

Benoit Cloitre, Aug 13 2002

Keywords

Comments

Sequence is probably > 0 for n > 33.
The graph of this sequence is compelling evidence that 33 is the last term of sequence A072966. - T. D. Noe, Apr 10 2007

Crossrefs

Column k=2 of A344447.

Programs

  • Mathematica
    lim = 10000;
    s = Select[Range[lim], PrimeOmega[#] == 2 &];
    c = Tally[ Sort[ Map[ Total, Union[Subsets[s, {2}],
          Table[{s[[i]], s[[i]]}, {i, 1, Length[s]}]]]]];
    a = Table[0, lim];
    i=1; While[c[[i]] [[1]]<=lim, a[[c[[i]] [[1]]]]=c[[i]] [[2]]; i++];
    a (* Robert Price, Mar 30 2019 *)
  • PARI
    a(n)=sum(i=1, n, sum(j=1, i, if(abs(bigomega(i)-2) + abs(bigomega(j)-2) + abs(n-i-j),0,1)))
    
  • PARI
    a(n)=my(s); forprime(p=2,n\4, forprime(q=2,min(n\(2*p),p), if(bigomega(n-p*q)==2, s++))); s \\ Charles R Greathouse IV, Dec 07 2014

Formula

From Reinhard Zumkeller, Jan 21 2010: (Start)
a(A100592(n)) = n;
a(m) < n for m < A100592(n);
A171963(n) = a(A001358(n)). (End)
a(n) = Sum_{i=1..floor(n/2)} [Omega(i) == 2] * [Omega(n-i) == 2], where Omega = A001222 and [] is the Iverson Bracket. - Wesley Ivan Hurt, Apr 04 2018
a(n) = [x^n y^2] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

A344257 Number of partitions of n into 10 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 10, 8, 13, 13, 18, 17, 20, 19, 25, 28, 33, 33, 38, 40, 50, 52, 59, 63, 71, 75, 86, 94, 105, 110, 124, 131, 150, 159, 174, 189, 205, 217, 242, 264, 288, 303, 327, 354, 388, 414, 443, 476, 511, 547, 594, 641
Offset: 40

Views

Author

Wesley Ivan Hurt, May 13 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=10 of A344447.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
         `if`(i>n, 0, x*b(n-i, h(min(n-i, i))))+b(n, h(i-1)))), x, 11)
        end:
    a:= n-> coeff(b(n, h(n)), x, 10):
    seq(a(n), n=40..120);  # Alois P. Heinz, May 26 2021
  • Mathematica
    h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 11}];
    a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 10}];
    Table[a[n], {n, 40, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} [Omega(r) = Omega(q) = Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p-q-r) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^10] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 19 2021

Extensions

a(83)-a(103) from Alois P. Heinz, May 18 2021

A340756 Number of partitions of n into 4 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 3, 4, 2, 3, 4, 5, 6, 5, 4, 7, 7, 9, 9, 9, 7, 9, 12, 13, 11, 11, 13, 16, 17, 17, 18, 18, 17, 20, 25, 25, 23, 24, 26, 32, 29, 31, 33, 31, 33, 35, 43, 43, 40, 39, 45, 48, 52, 50, 52, 53, 52, 61, 69, 67, 61, 61, 70, 79, 76, 76, 80, 81, 85, 88, 101
Offset: 16

Views

Author

Wesley Ivan Hurt, Jan 19 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=4 of A344447.

Programs

  • Mathematica
    Table[Sum[Sum[Sum[KroneckerDelta[PrimeOmega[k], PrimeOmega[j], PrimeOmega[i], PrimeOmega[n - i - j - k], 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 16, 100}]
    Table[Count[IntegerPartitions[n,{4}],?(PrimeOmega[#]=={2,2,2,2}&)],{n,16,95}] (* _Harvey P. Dale, May 14 2022 *)

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} [Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

A281617 Expansion of Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j = p*q, p prime, q prime} (1 - x^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 3, 0, 5, 2, 6, 3, 9, 3, 14, 7, 16, 10, 23, 12, 32, 20, 37, 28, 52, 35, 69, 49, 80, 68, 110, 83, 137, 112, 166, 150, 215, 178, 268, 239, 324, 303, 406, 365, 504, 472, 604, 584, 747, 708, 917, 888, 1089, 1085, 1337, 1311, 1618, 1606, 1916, 1954, 2332, 2334, 2782, 2829, 3300, 3407, 3963
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of parts in all partitions of n into semiprimes (A001358).
Convolution of A086971 and A101048.

Examples

			a(12) = 5 because we have [6, 6], [4, 4, 4] and 2 + 3 = 5.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0$2],
         `if`(i>n, 0, (p-> p+[0, p[1]])(b(n-i, h(min(n-i, i)))))+b(n, h(i-1))))
        end:
    a:= n-> b(n, h(n))[2]:
    seq(a(n), n=0..70);  # Alois P. Heinz, May 19 2021
  • Mathematica
    nmax = 70; Rest[CoefficientList[Series[Sum[Floor[PrimeOmega[i]/2] Floor[2/PrimeOmega[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - Floor[PrimeOmega[j]/2] Floor[2/PrimeOmega[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j = p*q, p prime, q prime} (1 - x^j).
a(n) = Sum_{k>0} k * A344447(n,k). - Alois P. Heinz, May 19 2021

A344245 Number of partitions of n into 5 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 4, 3, 4, 4, 6, 7, 7, 6, 8, 9, 13, 11, 11, 12, 15, 16, 18, 18, 19, 19, 23, 26, 28, 27, 27, 32, 36, 37, 39, 42, 45, 44, 51, 55, 58, 55, 57, 66, 71, 75, 76, 82, 84, 87, 93, 104, 103, 103, 105, 119, 131, 130, 134, 141, 145, 151, 163, 173, 176, 173
Offset: 20

Views

Author

Wesley Ivan Hurt, May 12 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358 (semiprimes).
Cf. A340756.
Column k=5 of A344447.

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} [Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^5] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

A344246 Number of partitions of n into 6 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 4, 5, 7, 7, 8, 7, 10, 11, 14, 13, 15, 14, 17, 21, 24, 22, 25, 27, 32, 33, 36, 38, 41, 43, 47, 54, 58, 57, 63, 68, 77, 78, 83, 89, 94, 97, 106, 118, 123, 125, 131, 146, 156, 162, 166, 179, 187, 198, 211, 226, 236, 236, 251, 274, 290, 296
Offset: 24

Views

Author

Wesley Ivan Hurt, May 12 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=6 of A344447.

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} [Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^6] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

A344254 Number of partitions of n into 7 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 7, 8, 9, 7, 11, 12, 16, 15, 16, 16, 21, 23, 26, 27, 31, 31, 38, 41, 45, 46, 50, 55, 62, 66, 71, 77, 85, 85, 97, 105, 113, 117, 124, 136, 149, 156, 167, 179, 189, 199, 214, 235
Offset: 28

Views

Author

Wesley Ivan Hurt, May 12 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=7 of A344447.

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} [Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^7] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

A344255 Number of partitions of n into 8 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 9, 8, 12, 12, 17, 16, 18, 18, 22, 25, 30, 29, 33, 36, 44, 45, 51, 54, 59, 63, 71, 78, 87, 90, 99, 106, 120, 124, 136, 147, 157, 166, 182, 199, 216, 223, 238, 259, 280, 298, 314
Offset: 32

Views

Author

Wesley Ivan Hurt, May 12 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=8 of A344447.

Programs

  • Mathematica
    h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 9}];
    a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 8}];
    Table[a[n], {n, 32, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz in A344257 *)

Formula

a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} [Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

A344256 Number of partitions of n into 9 semiprime parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 5, 3, 5, 5, 8, 8, 10, 8, 12, 13, 18, 16, 19, 19, 24, 27, 31, 31, 37, 38, 46, 50, 57, 58, 65, 71, 80, 86, 96, 102, 115, 119, 134, 146, 160, 167, 181, 197, 217, 232, 252, 269, 290, 306, 333, 364, 387, 407, 434, 474, 512, 541
Offset: 36

Views

Author

Wesley Ivan Hurt, May 13 2021

Keywords

Crossrefs

Cf. A001222 (Omega), A001358.
Column k=9 of A344447.

Programs

  • Mathematica
    h[n_] := h[n] = If[n == 0, 0,If[PrimeOmega[n] == 2, n, h[n-1]]];
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, If[i > n, 0, x*b[n-i, h[Min[n-i, i]]]]+b[n, h[i-1]]]], {x, 0, 10}];
    a[n_] := SeriesCoefficient[b[n, h[n]], {x, 0, 9}];
    Table[a[n], {n, 36, 120}] (* Jean-François Alcover, May 15 2025, after Alois P. Heinz in A344257 *)

Formula

a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} [Omega(q) = Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p-q) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^9] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021

Extensions

More terms from Alois P. Heinz, May 18 2021
Showing 1-10 of 11 results. Next