cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A344034 Numbers that are the sum of five positive cubes in four or more ways.

Original entry on oeis.org

1252, 1376, 1461, 1522, 1548, 1585, 1590, 1646, 1702, 1709, 1737, 1739, 1765, 1772, 1798, 1802, 1810, 1864, 1889, 1954, 1980, 1987, 2006, 2033, 2043, 2081, 2096, 2104, 2152, 2160, 2195, 2225, 2241, 2250, 2251, 2276, 2313, 2322, 2339, 2341, 2367, 2374, 2377, 2416, 2423, 2430, 2449, 2456, 2458, 2465, 2467, 2486
Offset: 1

Views

Author

David Consiglio, Jr., May 07 2021

Keywords

Examples

			1461 = 1^3 + 1^3 + 1^3 + 9^3 +  9^3
     = 1^3 + 1^3 + 4^3 + 4^3 + 11^3
     = 3^3 + 3^3 + 4^3 + 7^3 + 10^3
     = 6^3 + 6^3 + 7^3 + 7^3 +  7^3
so 1461 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A344243 Numbers that are the sum of five fourth powers in three or more ways.

Original entry on oeis.org

4225, 6610, 6850, 9170, 9235, 9490, 11299, 12929, 14209, 14690, 14755, 14770, 15314, 16579, 16594, 16659, 16834, 17203, 17235, 17315, 17859, 17874, 17939, 18785, 18850, 18979, 19154, 19700, 19715, 20674, 20995, 21235, 21250, 21330, 21364, 21410, 21954, 23139, 23795, 24754, 25810, 26578, 28610, 28930
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Examples

			6850 = 1^4 + 2^4 + 2^4 + 4^4 + 9^4
     = 2^4 + 3^4 + 4^4 + 7^4 + 8^4
     = 3^4 + 3^4 + 6^4 + 6^4 + 8^4
so 6850 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])

A344355 Numbers that are the sum of five fourth powers in exactly four ways.

Original entry on oeis.org

20995, 21235, 31250, 41474, 43235, 43250, 43315, 43490, 43859, 45139, 46290, 47570, 51939, 53234, 53299, 54994, 56274, 57379, 57410, 57779, 59329, 63970, 67010, 68035, 68290, 71795, 71954, 73730, 73954, 75714, 75794, 77890, 82099, 84499, 86275, 86450, 87730, 92500, 93474, 93859, 94130, 94210, 96194
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Comments

Differs from A344354 at term 22 because 59779 = 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 7^4 + 7^4 + 9^4 + 10^4 + 14^4.

Examples

			31250 is a term of this sequence because 31250 = 2^4 + 2^4 + 4^4 + 7^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 13^4 = 4^4 + 6^4 + 7^4 + 9^4 + 12^4 = 5^4 + 5^4 + 10^4 + 10^4 + 10^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 50)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A344358 Numbers that are the sum of five fourth powers in five or more ways.

Original entry on oeis.org

59779, 67859, 93394, 108274, 112850, 136915, 142354, 151300, 151475, 161459, 168979, 181219, 183539, 183604, 185299, 187699, 189394, 193379, 195394, 197779, 199090, 199474, 200979, 201874, 202979, 203299, 205859, 211059, 211330, 212419, 213730, 217154, 217810, 217890, 221779, 223090, 223155
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Examples

			93394 is a term of this sequence because 93394 = 1^4 + 4^4 + 8^4 + 14^4 + 15^4 = 1^4 + 6^4 + 12^4 + 12^4 + 15^4 = 1^4 + 9^4 + 10^4 + 14^4 + 14^4 = 5^4 + 6^4 + 11^4 + 14^4 + 14^4 = 5^4 + 7^4 + 8^4 + 12^4 + 16^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 50)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 5])
    for x in range(len(rets)):
        print(rets[x])

A345561 Numbers that are the sum of six fourth powers in four or more ways.

Original entry on oeis.org

6626, 6691, 6866, 9251, 9491, 10115, 10706, 10786, 11555, 12595, 14225, 14691, 14771, 15315, 15330, 15395, 15570, 16051, 16595, 16610, 16660, 16675, 16850, 17090, 17091, 17236, 17316, 17331, 17346, 17860, 17875, 17940, 17955, 18195, 18786, 18851, 18866, 19155
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A344352 Numbers that are the sum of four fourth powers in four or more ways.

Original entry on oeis.org

236674, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 708483, 708834, 729938, 789378, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979, 1339074, 1342979, 1352898, 1357059, 1379043, 1518578
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Examples

			300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,200)]
    count = 1
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
        count += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.