cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344422 Palindromes having more divisors than all smaller palindromes.

Original entry on oeis.org

1, 2, 4, 6, 44, 66, 252, 2112, 2772, 6336, 27972, 48384, 219912, 252252, 696696, 828828, 2114112, 4228224, 21333312, 42666624, 63999936, 234666432, 2154664512, 2329559232, 4815995184, 8402442048, 21354645312, 40362626304, 63708380736, 211887788112
Offset: 1

Views

Author

Bhupendra Kumar Singh, May 17 2021

Keywords

Comments

A000005(a(n)) = 1, 2, 3, 4, 6, 8, 18, 28, 36, 42, 48, 72, 96, 108, 128, 144, 168, 192, 336, 384, .... - Felix Fröhlich, May 19 2021
From Jon E. Schoenfield, Jun 22 2021: (Start)
There exists at least one m-digit term for every m in 1..22 except 21 (see the b-file).
Conjecture: all terms after a(1)=1 are even. (End)

Examples

			Terms include: 4 (3 divisors); 6 (4 divisors); 44 (6 divisors); 66 (8 divisors); 252 (18 divisors).
		

Crossrefs

Cf. A000005, A002113 (palindromes), A076888 (their number of divisors), A002182, A084324, A093036, A345250.

Programs

  • Mathematica
    pal=Union@Flatten[Table[r=IntegerDigits@n;FromDigits/@(Join[r,#]&/@{Reverse@r,Rest@Reverse@r}),{n,10^5}]];m=0;lst={};Do[s=DivisorSigma[0,k];If[s>m,AppendTo[lst,k];m=s],{k,pal}];lst (* Giorgos Kalogeropoulos, Dec 08 2021 *)
  • PARI
    \\ See PARI link. David A. Corneth, May 18 2021

Formula

A000005(a(n)) = A345250(n).

Extensions

Data corrected and extended by David A. Corneth, May 18 2021