A344447 Number T(n,k) of partitions of n into k semiprimes; triangle T(n,k), n>=0, read by rows.
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 2, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, 0, 1, 2, 1, 0, 0, 2, 3, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 1, 2, 3, 2, 1, 0, 0, 1, 3, 3, 1, 0, 0, 2, 3, 4, 2, 1, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1 ; 0 ; 0 ; 0 ; 0, 1 ; 0 ; 0, 1 ; 0 ; 0, 0, 1 ; 0, 1 ; 0, 1, 1 ; 0 ; 0, 0, 1, 1 ; 0, 0, 1 ; 0, 1, 1, 1 ; 0, 1, 1 ; 0, 0, 1, 1, 1 ; 0, 0, 0, 1 ; 0, 0, 2, 2, 1 ; 0, 0, 2, 1 ; 0, 0, 2, 1, 1, 1 ; ...
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Crossrefs
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 0, `if`(numtheory[bigomega](n)=2, n, h(n-1))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, `if`(i>n, 0, expand(x*b(n-i, h(min(n-i, i)))))+b(n, h(i-1)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n, h(n))): seq(T(n), n=0..32);
-
Mathematica
h[n_] := h[n] = If[n == 0, 0, If[PrimeOmega[n] == 2, n, h[n-1]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, If[i > n, 0, Expand[x*b[n-i, h[Min[n-i, i]]]]] + b[n, h[i-1]]]]; T[n_] := Table[Coefficient[#, x, i], {i, 0, Max[0, Exponent[#, x]]}]&[b[n, h[n]]]; Table[T[n], {n, 0, 32}] // Flatten (* Jean-François Alcover, Aug 19 2021, after Alois P. Heinz *)
Comments