A344603 Triangular numbers whose Hamming weight is also triangular.
0, 1, 21, 28, 190, 231, 276, 378, 435, 630, 741, 903, 946, 1326, 1540, 1596, 1830, 1953, 2016, 2278, 2701, 4278, 4465, 5460, 5778, 5886, 6328, 6441, 6670, 6903, 8646, 11026, 11781, 11935, 12246, 12720, 15225, 15400, 15931, 16471, 17391, 17578, 17955, 18336, 20100
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Audrey Baumheckel and Tamás Forgács, Guided by the primes -- an exploration of very triangular numbers, arXiv:2105.10354 [math.HO], 2021.
Programs
-
Maple
q:= n-> issqr(8*add(i, i=Bits[Split](n))+1): select(q, [j*(j+1)/2$j=0..200])[]; # Alois P. Heinz, May 24 2021
-
Mathematica
Select[Table[n*(n + 1)/2, {n, 0, 200}], IntegerQ @ Sqrt[8 * Plus @@ IntegerDigits[#, 2] + 1] &] (* Amiram Eldar, May 24 2021 *) Select[Accumulate[Range[0,200]],OddQ[Sqrt[8 DigitCount[#,2,1]+1]]&] (* Harvey P. Dale, Feb 19 2023 *)
-
PARI
isok(n) = ispolygonal(n, 3) && ispolygonal(hammingweight(n), 3);