cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344824 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{j=1..n} floor(n/j) * (-k)^(j-1).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 0, 3, 4, 1, -1, 5, 2, 5, 1, -2, 9, -4, 4, 6, 1, -3, 15, -20, 13, 4, 7, 1, -4, 23, -52, 62, -16, 6, 8, 1, -5, 33, -106, 205, -174, 49, 4, 9, 1, -6, 45, -188, 520, -806, 556, -88, 7, 10, 1, -7, 59, -304, 1109, -2584, 3291, -1660, 173, 7, 11
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Examples

			Square array, A(n, k), begins:
  1, 1,   1,    1,    1,     1,     1, ...
  2, 1,   0,   -1,   -2,    -3,    -4, ...
  3, 3,   5,    9,   15,    23,    33, ...
  4, 2,  -4,  -20,  -52,  -106,  -188, ...
  5, 4,  13,   62,  205,   520,  1109, ...
  6, 4, -16, -174, -806, -2584, -6636, ...
Antidiagonal triangle, T(n, k), begins:
  1;
  1,  2;
  1,  1,   3;
  1,  0,   3,    4;
  1, -1,   5,    2,   5;
  1, -2,   9,   -4,   4,    6;
  1, -3,  15,  -20,  13,    4,   7;
  1, -4,  23,  -52,  62,  -16,   6,   8;
  1, -5,  33, -106, 205, -174,  49,   4,  9;
  1, -6,  45, -188, 520, -806, 556, -88,  7,  10;
		

Crossrefs

Columns k=0..4 give A000027, A059851, A344817, A344818, A344819.
A(n,n) gives A344820.
Cf. A344821.

Programs

  • Magma
    A:= func< n,k | k eq n select n else (&+[Floor(n/j)*(-k)^(j-1): j in [1..n]]) >;
    A344824:= func< n,k | A(k+1, n-k-1) >;
    [A344824(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 27 2024
    
  • Mathematica
    A[n_, k_] := Sum[If[k == 0 && j == 1, 1, (-k)^(j - 1)] * Quotient[n, j], {j, 1, n}]; Table[A[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 29 2021 *)
  • PARI
    A(n, k) = sum(j=1, n, n\j*(-k)^(j-1));
    
  • PARI
    A(n, k) = sum(j=1, n, sumdiv(j, d, (-k)^(d-1)));
    
  • SageMath
    def A(n,k): return n if k==n else sum((n//j)*(-k)^(j-1) for j in range(1,n+1))
    def A344824(n,k): return A(k+1, n-k-1)
    flatten([[A344824(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 27 2024

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 + k*x^j).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (-k)^(j-1) * x^j/(1 - x^j).
A(n,k) = Sum_{j=1..n} Sum_{d|j} (-k)^(d - 1).
T(n, k) = Sum_{j=1..(k+1)} floor((k+1)/j) * (k-n+1)^(j-1), for n >= 1, 0 <= k <= n-1 (antidiagonal triangle). - G. C. Greubel, Jun 27 2024