A344834 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) AND (k * 2^max(0, w(n)-w(k))) (where AND denotes the bitwise AND operator and w = A070939).
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 4, 2, 2, 4, 0, 0, 4, 4, 3, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 4, 0, 0, 8, 4, 6, 4, 4, 6, 4, 8, 0, 0, 8, 8, 6, 4, 5, 4, 6, 8, 8, 0, 0, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 0, 0, 8, 8, 8, 8, 5, 6, 5, 8, 8, 8, 8, 0
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+---------------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 2 2 4 4 4 4 8 8 8 8 8 8 8 8 2| 0 2 2 2 4 4 4 4 8 8 8 8 8 8 8 8 3| 0 2 2 3 4 4 6 6 8 8 8 8 12 12 12 12 4| 0 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 5| 0 4 4 4 4 5 4 5 8 8 10 10 8 8 10 10 6| 0 4 4 6 4 4 6 6 8 8 8 8 12 12 12 12 7| 0 4 4 6 4 5 6 7 8 8 10 10 12 12 14 14 8| 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9| 0 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 10| 0 8 8 8 8 10 8 10 8 8 10 10 8 8 10 10 11| 0 8 8 8 8 10 8 10 8 9 10 11 8 9 10 11 12| 0 8 8 12 8 8 12 12 8 8 8 8 12 12 12 12 13| 0 8 8 12 8 8 12 12 8 9 8 9 12 13 12 13 14| 0 8 8 12 8 10 12 14 8 8 10 10 12 12 14 14 15| 0 8 8 12 8 10 12 14 8 9 10 11 12 13 14 15
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10
Crossrefs
Programs
-
PARI
T(n,k,op=bitand,w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
Comments