cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344931 Sum of the distinct even-indexed prime divisors, p_{2k}, of n.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 7, 0, 3, 0, 0, 3, 13, 7, 3, 0, 0, 3, 19, 0, 10, 0, 0, 3, 0, 13, 3, 7, 29, 3, 0, 0, 3, 0, 7, 3, 37, 19, 16, 0, 0, 10, 43, 0, 3, 0, 0, 3, 7, 0, 3, 13, 53, 3, 0, 7, 22, 29, 0, 3, 61, 0, 10, 0, 13, 3, 0, 0, 3, 7, 71, 3, 0, 37, 3, 19, 7, 16, 79, 0, 3, 0, 0, 10, 0, 43, 32
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 02 2021

Keywords

Comments

Inverse Möbius transform of n * c(n) * ((pi(n)+1) mod 2), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 23 2024

Examples

			a(12) = Sum_{p|12} p * ((pi(p)+1) mod 2) = 2*0 + 3*1 = 3.
		

Crossrefs

Cf. A000720 (pi), A008472 (sopf), A005074, A324966.
Cf. A344908 (sum of distinct odd-indexed prime divisors).

Programs

  • Mathematica
    Table[Sum[k*Mod[PrimePi[k] + 1, 2] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (!(primepi(f[k,1]) % 2), f[k,1])); \\ Michel Marcus, Jun 12 2021

Formula

a(n) = Sum_{p|n} p * ((pi(p)+1) mod 2).
G.f.: Sum_{k>=1} prime(2*k) * x^prime(2*k) / (1 - x^prime(2*k)). - Ilya Gutkovskiy, Oct 24 2023
a(n) = Sum_{d|n} d * c(d) * ((pi(d)+1) mod 2), where c = A010051. - Wesley Ivan Hurt, Jun 23 2024

A366725 Sum of odd indices of distinct prime factors of n.

Original entry on oeis.org

0, 1, 0, 1, 3, 1, 0, 1, 0, 4, 5, 1, 0, 1, 3, 1, 7, 1, 0, 4, 0, 6, 9, 1, 3, 1, 0, 1, 0, 4, 11, 1, 5, 8, 3, 1, 0, 1, 0, 4, 13, 1, 0, 6, 3, 10, 15, 1, 0, 4, 7, 1, 0, 1, 8, 1, 0, 1, 17, 4, 0, 12, 0, 1, 3, 6, 19, 8, 9, 4, 0, 1, 21, 1, 3, 1, 5, 1, 0, 4, 0, 14, 23, 1, 10, 1, 0, 6, 0, 4, 0, 10, 11, 16, 3, 1, 25, 1, 5, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 24 2023

Keywords

Examples

			a(60) = 4 because 60 = 2^2 * 3 * 5 = prime(1)^2 * prime(2) * prime(3) and 1 + 3 = 4.
		

Crossrefs

Cf. A000720 (pi), A066207 (positions of 0's), A066328, A324966, A332422, A344908, A366528, A366784.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[(2 k - 1) x^Prime[2 k - 1]/(1 - x^Prime[2 k - 1]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := Module[{i = PrimePi[p]}, If[OddQ[i], i, 0]]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 03 2025 *)
  • PARI
    f(n) = if(n % 2, n, 0);
    a(n) = vecsum(apply(x -> f(primepi(x)), factor(n)[, 1])); \\ Amiram Eldar, Jul 03 2025

Formula

G.f.: Sum_{k>=1} (2*k-1) * x^prime(2*k-1) / (1 - x^prime(2*k-1)).
From Amiram Eldar, Jul 03 2025: (Start)
Additive with a(p^e) = pi(p) if pi(p) is odd, and 0 otherwise.
a(n) = A066328(n) - 2*A366784(n). (End)
Showing 1-2 of 2 results.