A344943 Numbers that are the sum of five fourth powers in exactly seven ways.
197779, 211059, 217154, 236675, 431155, 444019, 480739, 503539, 530659, 548994, 564979, 568450, 571539, 602450, 602770, 621859, 625635, 625939, 626194, 650659, 651954, 653059, 654130, 666739, 687314, 692754, 692899, 698019, 708499, 716739, 728914, 730914
Offset: 1
Keywords
Examples
197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 21^4 = 3^4 + 5^4 + 6^4 + 6^4 + 21^4 = 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 5): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 7]) for x in range(len(rets)): print(rets[x])
Comments