A345113 a(n) is the palindrome reached after A345112(n) steps under repeated applications of the map x -> A345111(x), starting with n, or 0 if no palindrome is ever reached.
2, 4, 6, 8, 11, 33, 55, 77, 99, 11, 22, 33, 44, 55, 66, 77, 88, 99, 323, 22, 33, 44, 55, 66, 77, 88, 99, 323, 121, 33, 44, 55, 66, 77, 88, 99, 323, 121, 683737386, 44, 55, 66, 77, 88, 99, 323, 121, 683737386
Offset: 1
Examples
For n = 19: 19 + 91 = 110, 110 + 101 = 211, 211 + 112 = 323 and 323 is a palindrome, so a(19) = 323.
Programs
-
PARI
eva(n) = subst(Pol(n), x, 10) rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v a(n) = my(x=n); while(1, x=x+eva(rot(digits(x))); if(digits(x)==Vecrev(digits(x)), return(x)))
-
Python
def pal(s): return s == s[::-1] def rotl(s): return s[1:] + s[0] def A345111(n): return n + int(rotl(str(n))) def a(n): i, iter, seen = 0, n, set() while not (iter > n and pal(str(iter))) and iter not in seen: seen.add(iter) i, iter = i+1, A345111(iter) return iter if iter > n and pal(str(iter)) else 0 print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Jun 09 2021
Comments