cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A247951 a(n) = Product_{i=1..n} sigma_2(i).

Original entry on oeis.org

1, 5, 50, 1050, 27300, 1365000, 68250000, 5801250000, 527913750000, 68628787500000, 8372712075000000, 1758269535750000000, 298905821077500000000, 74726455269375000000000, 19428878370037500000000000, 6625247524182787500000000000
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 01 2014

Keywords

Comments

a(n) is the product of the sum of the squared divisors of i, for i from 1 to n.

Crossrefs

Cf. A000203 (sigma), A001157 (sigma_2), A066780 (product{i=1..n} sigma(i)), A066843, A345158, A345160.

Programs

  • Maple
    with(numtheory): A247951:=n->mul(sigma[2](i),i=1..n): seq(A247951(n), n=1..20);
  • Mathematica
    Table[Product[DivisorSigma[2, i], {i, n}], {n, 20}]
  • PARI
    lista(nn) = vector(nn, n, prod(i=1, n, sigma(i, 2))) \\ Michel Marcus, Oct 01 2014

Formula

a(n) = Product_{i=1..n} A001157(i).
Lim_{n->infinity} (a(n) / (n!)^2)^(1/n) = A345158. - Vaclav Kotesovec, Jun 10 2021

A345159 Product_{p primes, k>=1} ((p^(3*k + 3) - 1)/(p^(3*k + 3) - p^3))^(1/p^k).

Original entry on oeis.org

1, 0, 8, 0, 0, 2, 3, 0, 5, 0, 2, 4, 7, 2, 0, 5, 3, 5, 8, 4, 2, 7, 9, 1, 6, 9, 4, 3, 6, 9, 1, 7, 6, 2, 3, 2, 1, 4, 2, 4, 0, 0, 8, 8, 9, 2, 2, 3, 7, 8, 2, 2, 6, 9, 8, 6, 7, 4, 3, 4, 7, 5, 5, 1, 3, 7, 5, 6, 4, 8, 0, 1, 7, 0, 7, 1, 6, 5, 8, 0, 2, 2, 2, 9, 3, 5, 3, 8, 7, 8, 1, 1, 1, 7, 0, 6, 2, 3, 8, 1, 1, 3, 6, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 10 2021

Keywords

Examples

			1.080023050247205358427916943691762321424008892237822698674347551375648...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 600; prod = 1; s = 3; Do[Clear[f]; f[p_] := ((p^((k + 1)*s) - 1)/(p^((k + 1)*s) - p^s))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 110]]; Print[prod], {k, 1, 100}]

Formula

Equals lim_{n->infinity} (A345160(n) / (n!)^3)^(1/n).
Showing 1-2 of 2 results.