cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345182 a(1) = 1, a(2) = 0; a(n) = Sum_{d|n, d < n} a(d).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 3, 4, 1, 6, 1, 5, 3, 2, 1, 12, 2, 2, 4, 5, 1, 10, 1, 8, 3, 2, 3, 18, 1, 2, 3, 12, 1, 10, 1, 5, 8, 2, 1, 28, 2, 6, 3, 5, 1, 16, 3, 12, 3, 2, 1, 31, 1, 2, 8, 16, 3, 10, 1, 5, 3, 10, 1, 50, 1, 2, 8, 5, 3, 10, 1, 28, 8, 2, 1, 31, 3, 2, 3, 12, 1, 36
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2021

Keywords

Comments

From Antti Karttunen, Nov 25 2024: (Start)
a(n) is the number of strict chains of divisors from n to 1 that do not end with 2/1. For example, the a(n) such chains for n = 1, 2, 4, 6, 8, 12, 30 are:
1 (none) 4/1 6/1 8/1 12/1 30/1
6/3/1 8/4/1 12/3/1 30/3/1
12/4/1 30/5/1
12/6/1 30/6/1
12/6/3/1 30/10/1
30/15/1
30/6/3/1
30/10/5/1
30/15/3/1
30/15/5/1
leaving 1, 0, 1, 2, 2, 5, 10 chains out of the 1, 1, 2, 3, 4, 8, 13 chains depicted in the illustration of A074206.
Equally, a(n) is the number of strict chains of divisors from n to 1 where n is not followed by n/2 as the second divisor in the chain, which explains nicely the formula a(n) = A074206(n) - A074206(n/2) when n is even.
(End)

Crossrefs

Cf. A022825 (partial sums), A074206, A167865, A320224, A345138, A345141, A378218 (Dirichlet inverse), A378223 (inverse Möbius transform).

Programs

  • Mathematica
    a[1] = 1; a[2] = 0; a[n_] := a[n] = Sum[If[d < n, a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
    nmax = 90; A[] = 0; Do[A[x] = x - x^2 + Sum[A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
  • PARI
    memoA345182 = Map();
    A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(dA345182(d),0)); mapput(memoA345182,n,v); (v))); \\ Antti Karttunen, Nov 22 2024
    
  • PARI
    up_to = 20000;
    A345182list(up_to_n) = { my(v=vector(up_to_n)); v[1] = 1; v[2] = 0; for(n=3,up_to_n,v[n] = sumdiv(n,d,(dA345182list(up_to);
    A345182(n) = v345182[n]; \\ Antti Karttunen, Nov 25 2024

Formula

G.f. A(x) satisfies: A(x) = x - x^2 + A(x^2) + A(x^3) + A(x^4) + ...
a(n) = A074206(n) if n is odd, otherwise a(n) = A074206(n) - A074206(n/2).