cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A378218 Dirichlet inverse of A345182.

Original entry on oeis.org

1, 0, -1, -1, -1, -2, -1, -2, -1, -2, -1, -3, -1, -2, -1, -3, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -2, -1, -5, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -2, -1, -5, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -2, -1, -5
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2024

Keywords

Crossrefs

Programs

  • PARI
    memoA345182 = Map();
    A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(dA345182(d),0)); mapput(memoA345182,n,v); (v)));
    memoA378218 = Map();
    A378218(n) = if(1==n,1,my(v); if(mapisdefined(memoA378218,n,&v), v, v = -sumdiv(n,d,if(dA345182(n/d)*A378218(d),0)); mapput(memoA378218,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA345182(n/d) * a(d).
Apparently, abs(a(n+1)) = A359508(n).

A378223 Inverse Möbius transform of A345182.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 2, 4, 4, 4, 2, 10, 2, 4, 6, 8, 2, 12, 2, 10, 6, 4, 2, 24, 4, 4, 8, 10, 2, 20, 2, 16, 6, 4, 6, 36, 2, 4, 6, 24, 2, 20, 2, 10, 16, 4, 2, 56, 4, 12, 6, 10, 2, 32, 6, 24, 6, 4, 2, 62, 2, 4, 16, 32, 6, 20, 2, 10, 6, 20, 2, 100, 2, 4, 16, 10, 6, 20, 2, 56, 16, 4, 2, 62, 6, 4, 6, 24, 2, 72, 6, 10, 6, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2024

Keywords

Comments

Apparently the Dirichlet convolution of A002131 and A323910. - Antti Karttunen, Nov 30 2024

Crossrefs

Cf. A002131, A323910, A345182, A378224 (Dirichlet inverse).
Cf. also A067824.
Odd bisection is not equal to A278223.

Programs

  • PARI
    memoA345182 = Map();
    A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(dA345182(d),0)); mapput(memoA345182,n,v); (v)));
    A378223(n) = sumdiv(n,d,A345182(d));
    
  • PARI
    up_to = 20000;
    A378223list(up_to_n) = { my(v=vector(up_to_n)); v[1] = 1; v[2] = 0; for(n=3,up_to_n,v[n] = 1+sumdiv(n,d,(dA378223list(up_to);
    A378223(n) = v378223[n];

Formula

a(n) = Sum_{d|n} A345182(d).
For n > 2, a(n) = 2*A345182(n).

A323910 Dirichlet inverse of the deficiency of n, A033879.

Original entry on oeis.org

1, -1, -2, 0, -4, 4, -6, 0, -1, 6, -10, 2, -12, 8, 10, 0, -16, 1, -18, 2, 14, 12, -22, 4, -3, 14, -2, 2, -28, -16, -30, 0, 22, 18, 26, 4, -36, 20, 26, 4, -40, -24, -42, 2, 4, 24, -46, 8, -5, -1, 34, 2, -52, 0, 42, 4, 38, 30, -58, 2, -60, 32, 6, 0, 50, -40, -66, 2, 46, -40, -70, 12, -72, 38, 2, 2, 62, -48, -78, 8, -4, 42, -82, -2, 66, 44, 58, 4, -88, 2, 74, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Cf. A033879, A323911, A323912, A359549 (parity of terms).
Sequences that appear in the convolution formulas: A002033, A008683, A023900, A055615, A046692, A067824, A074206, A174725, A191161, A327960, A328722, A330575, A345182, A349341, A346246, A349387.

Programs

  • Mathematica
    b[n_] := 2 n - DivisorSigma[1, n];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v323910 = DirInverse(vector(up_to,n,A033879(n)));
    A323910(n) = v323910[n];

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA033879(n/d) * a(d).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly:
a(n) = Sum_{d|n} A046692(d)*A067824(n/d).
a(n) = Sum_{d|n} A055615(d)*A074206(n/d).
a(n) = Sum_{d|n} A023900(d)*A174725(n/d).
a(n) = Sum_{d|n} A008683(d)*A323912(n/d).
a(n) = Sum_{d|n} A191161(d)*A327960(n/d).
a(n) = Sum_{d|n} A328722(d)*A330575(n/d).
a(n) = Sum_{d|n} A345182(d)*A349341(n/d).
a(n) = Sum_{d|n} A346246(d)*A349387(n/d).
a(n) = Sum_{d|n} A002033(d-1)*A055615(n/d).
(End)

A022825 a(n) = a([ n/2 ]) + a([ n/3 ]) + . . . + a([ n/n ]) for n > 1, a(1) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 9, 11, 13, 14, 19, 20, 22, 25, 29, 30, 36, 37, 42, 45, 47, 48, 60, 62, 64, 68, 73, 74, 84, 85, 93, 96, 98, 101, 119, 120, 122, 125, 137, 138, 148, 149, 154, 162, 164, 165, 193, 195, 201, 204, 209, 210, 226, 229, 241, 244, 246, 247, 278, 279
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          add(a(iquo(n,j)), j=2..n))
        end:
    seq(a(n), n=1..63);  # Alois P. Heinz, Mar 31 2021
  • Mathematica
    Fold[Append[#1, Total[#1[[Quotient[#2, Range[2, #2]]]]]] &, {1}, Range[2, 60]] (* Ivan Neretin, Aug 24 2016 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A022825(n):
        if n <= 1:
            return n
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A022825(k1)
            j, k1 = j2, n//j2
        return c+n+1-j # Chai Wah Wu, Mar 31 2021

Formula

G.f. A(x) satisfies: A(x) = x + (1/(1 - x)) * Sum_{k>=2} (1 - x^k) * A(x^k). - Ilya Gutkovskiy, Feb 21 2022

Extensions

Offset corrected by Alois P. Heinz, Mar 31 2021

A378224 Dirichlet inverse of A378223.

Original entry on oeis.org

1, -1, -2, -1, -2, 0, -2, -1, 0, 0, -2, 0, -2, 0, 2, -1, -2, 0, -2, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, -2, -1, 2, 0, 2, 0, -2, 0, 2, 0, -2, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, -2, 0, 2, 0, 2, 0, -2, 0, -2, 0, 0, -1, 2, 0, -2, 0, 2, 0, -2, 0, -2, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, 2, 0, 2, 0, -2, 0, 2, 0, 2, 0, 2, 0, -2
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2024

Keywords

Comments

Möbius transform of A378218.

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378223(n/d) * a(d).
a(n) = Sum_{d|n} A008683(n/d)*A378218(d).

A378531 Dirichlet convolution of A378432 and A378542.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 0, 2, 2, 3, 0, 4, 0, 3, 3, 6, 0, 4, 0, 4, 3, 3, 0, 14, 2, 3, 2, 4, 0, 6, 0, 10, 3, 3, 3, 18, 0, 3, 3, 14, 0, 6, 0, 4, 4, 3, 0, 30, 2, 4, 3, 4, 0, 14, 3, 14, 3, 3, 0, 30, 0, 3, 4, 22, 3, 6, 0, 4, 3, 6, 0, 48, 0, 3, 4, 4, 3, 6, 0, 30, 6, 3, 0, 30, 3, 3, 3, 14, 0, 30, 3, 4, 3, 3, 3, 74, 0, 4, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378533.

Crossrefs

Cf. A008683, A378532 (Dirichlet inverse), A378432, A378533 (inverse Möbius transform), A378542.
Cf. also A345182.

Programs

Formula

a(n) = Sum_{d|n} A378432(d)*A378542(n/d).
a(n) = Sum_{d|n} A008683(d)*A378533(n/d).
Showing 1-6 of 6 results.