cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A345182 a(1) = 1, a(2) = 0; a(n) = Sum_{d|n, d < n} a(d).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 3, 4, 1, 6, 1, 5, 3, 2, 1, 12, 2, 2, 4, 5, 1, 10, 1, 8, 3, 2, 3, 18, 1, 2, 3, 12, 1, 10, 1, 5, 8, 2, 1, 28, 2, 6, 3, 5, 1, 16, 3, 12, 3, 2, 1, 31, 1, 2, 8, 16, 3, 10, 1, 5, 3, 10, 1, 50, 1, 2, 8, 5, 3, 10, 1, 28, 8, 2, 1, 31, 3, 2, 3, 12, 1, 36
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2021

Keywords

Comments

From Antti Karttunen, Nov 25 2024: (Start)
a(n) is the number of strict chains of divisors from n to 1 that do not end with 2/1. For example, the a(n) such chains for n = 1, 2, 4, 6, 8, 12, 30 are:
1 (none) 4/1 6/1 8/1 12/1 30/1
6/3/1 8/4/1 12/3/1 30/3/1
12/4/1 30/5/1
12/6/1 30/6/1
12/6/3/1 30/10/1
30/15/1
30/6/3/1
30/10/5/1
30/15/3/1
30/15/5/1
leaving 1, 0, 1, 2, 2, 5, 10 chains out of the 1, 1, 2, 3, 4, 8, 13 chains depicted in the illustration of A074206.
Equally, a(n) is the number of strict chains of divisors from n to 1 where n is not followed by n/2 as the second divisor in the chain, which explains nicely the formula a(n) = A074206(n) - A074206(n/2) when n is even.
(End)

Crossrefs

Cf. A022825 (partial sums), A074206, A167865, A320224, A345138, A345141, A378218 (Dirichlet inverse), A378223 (inverse Möbius transform).

Programs

  • Mathematica
    a[1] = 1; a[2] = 0; a[n_] := a[n] = Sum[If[d < n, a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
    nmax = 90; A[] = 0; Do[A[x] = x - x^2 + Sum[A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
  • PARI
    memoA345182 = Map();
    A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(dA345182(d),0)); mapput(memoA345182,n,v); (v))); \\ Antti Karttunen, Nov 22 2024
    
  • PARI
    up_to = 20000;
    A345182list(up_to_n) = { my(v=vector(up_to_n)); v[1] = 1; v[2] = 0; for(n=3,up_to_n,v[n] = sumdiv(n,d,(dA345182list(up_to);
    A345182(n) = v345182[n]; \\ Antti Karttunen, Nov 25 2024

Formula

G.f. A(x) satisfies: A(x) = x - x^2 + A(x^2) + A(x^3) + A(x^4) + ...
a(n) = A074206(n) if n is odd, otherwise a(n) = A074206(n) - A074206(n/2).

A359508 a(n) = log_2(A359507(n) - 1).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Peter Kagey, Jan 03 2023

Keywords

Comments

Conjecture: A359507(n) is always of the form 2^m + 1.
If log_2(A359507(n) - 1) is not an integer, then define a(n) = -1.

Crossrefs

Programs

Formula

a(n) = A000523(A359507(n)-1).
Conjecture:
a(4k) = 1 for k > 0,
a(4k+1) = 2 for k > 0,
a(4k+2) = 1 for k > 0,
a(4k+3) = a(k) + 2 for k > 0.
Apparently, a(n) = abs(A378218(1+n)). [This holds at least up to n=65537] - Antti Karttunen, Nov 22 2024
a(n) = A007814((n - 3*b(n + 1) + 2) mod b(n + 1) + b(n + 2) - 1) + 1, where b(n) = 2^A000523(A002264(n)) for n >= 4. - Alan Michael Gómez Calderón, Feb 25 2025

Extensions

More terms from Antti Karttunen, Nov 22 2024

A378224 Dirichlet inverse of A378223.

Original entry on oeis.org

1, -1, -2, -1, -2, 0, -2, -1, 0, 0, -2, 0, -2, 0, 2, -1, -2, 0, -2, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, -2, -1, 2, 0, 2, 0, -2, 0, 2, 0, -2, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, -2, 0, 2, 0, 2, 0, -2, 0, -2, 0, 0, -1, 2, 0, -2, 0, 2, 0, -2, 0, -2, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, 2, 0, 2, 0, -2, 0, 2, 0, 2, 0, 2, 0, -2
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2024

Keywords

Comments

Möbius transform of A378218.

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378223(n/d) * a(d).
a(n) = Sum_{d|n} A008683(n/d)*A378218(d).

A378532 Dirichlet convolution of A296075 and A378525.

Original entry on oeis.org

1, 0, 0, -2, 0, -3, 0, -2, -2, -3, 0, -4, 0, -3, -3, -2, 0, -4, 0, -4, -3, -3, 0, -2, -2, -3, -2, -4, 0, -6, 0, -2, -3, -3, -3, -1, 0, -3, -3, -2, 0, -6, 0, -4, -4, -3, 0, -2, -2, -4, -3, -4, 0, -2, -3, -2, -3, -3, 0, 0, 0, -3, -4, -2, -3, -6, 0, -4, -3, -6, 0, 0, 0, -3, -4, -4, -3, -6, 0, -2, -2, -3, 0, 0, -3, -3, -3, -2
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Inverse Möbius transform of A378534.

Crossrefs

Cf. A033879, A296075, A378531 (Dirichlet inverse), A378534 (Möbius transform), A378525, A378542.
Cf. also A378218.

Programs

Formula

a(n) = Sum_{d|n} A296075(d)*A378525(n/d).
a(n) = Sum_{d|n} A378534(d).
Showing 1-4 of 4 results.