cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345190 Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.

Original entry on oeis.org

1, 5, 30, 229, 1938, 17530, 165852, 1621133, 16242474, 165923854, 1721675460, 18095802306, 192256162740, 2061367432212, 22276538889912, 242387718986301, 2653259550491034, 29198054511893638, 322835545567447092, 3584671507685675894, 39955514234936341980, 446897274497509974508
Offset: 1

Views

Author

Michel Marcus, Jun 10 2021

Keywords

Crossrefs

Cf. A005159 (unknown rows, shifted), A025226 (all rows), A345189 (false rows).

Programs

  • Mathematica
    CoefficientList[Series[(4 -Sqrt[1-12*x] -Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* G. C. Greubel, May 20 2022 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6)
    
  • SageMath
    def A345190_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
    a=A345190_list(40); a[1:] # G. C. Greubel, May 20 2022

Formula

G.f.: (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6.
a(n) = 2*A005159(n-1) - A345189(n). - G. C. Greubel, May 20 2022