A345221 Number of divisors of n with an even sum of divisors.
0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 3, 1, 2, 3, 0, 1, 2, 1, 3, 3, 2, 1, 4, 1, 2, 2, 3, 1, 6, 1, 0, 3, 2, 3, 3, 1, 2, 3, 4, 1, 6, 1, 3, 4, 2, 1, 5, 1, 2, 3, 3, 1, 4, 3, 4, 3, 2, 1, 9, 1, 2, 4, 0, 3, 6, 1, 3, 3, 6, 1, 4, 1, 2, 4, 3, 3, 6, 1, 5, 2, 2, 1, 9, 3, 2, 3, 4, 1, 8, 3, 3
Offset: 1
Examples
a(24) = 4; The divisors d of 24 are {1, 2, 3, 4, 6, 8, 12, 24} with corresponding values of sigma(d) {1, 3, 4, 7, 12, 15, 28, 60}. There are 4 even values of sigma(d).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Table[Sum[Mod[DivisorSigma[1, k] + 1, 2] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}] f1[p_, e_] := e+1; f2[p_, e_] := If[p == 2, e+1, Floor[e/2] + 1]; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 06 2023 *)
-
PARI
a(n) = sumdiv(n, d, !(sigma(d) % 2)); \\ Michel Marcus, Jun 11 2021
Formula
a(n) = Sum_{d|n} ((sigma(d)+1) mod 2).