cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345221 Number of divisors of n with an even sum of divisors.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 3, 1, 2, 3, 0, 1, 2, 1, 3, 3, 2, 1, 4, 1, 2, 2, 3, 1, 6, 1, 0, 3, 2, 3, 3, 1, 2, 3, 4, 1, 6, 1, 3, 4, 2, 1, 5, 1, 2, 3, 3, 1, 4, 3, 4, 3, 2, 1, 9, 1, 2, 4, 0, 3, 6, 1, 3, 3, 6, 1, 4, 1, 2, 4, 3, 3, 6, 1, 5, 2, 2, 1, 9, 3, 2, 3, 4, 1, 8, 3, 3
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 11 2021

Keywords

Examples

			a(24) = 4; The divisors d of 24 are {1, 2, 3, 4, 6, 8, 12, 24} with corresponding values of sigma(d) {1, 3, 4, 7, 12, 15, 28, 60}. There are 4 even values of sigma(d).
		

Crossrefs

Cf. A000005, A000203 (sigma), A065704.

Programs

  • Mathematica
    Table[Sum[Mod[DivisorSigma[1, k] + 1, 2] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
    f1[p_, e_] := e+1; f2[p_, e_] := If[p == 2, e+1, Floor[e/2] + 1]; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 06 2023 *)
  • PARI
    a(n) = sumdiv(n, d, !(sigma(d) % 2)); \\ Michel Marcus, Jun 11 2021

Formula

a(n) = Sum_{d|n} ((sigma(d)+1) mod 2).
a(n) = A000005(n) - A065704(n). - Antti Karttunen, Dec 13 2021