cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006786 Number of squarefree graphs on n vertices.

Original entry on oeis.org

1, 2, 4, 8, 18, 44, 117, 351, 1230, 5069, 25181, 152045, 1116403, 9899865, 104980369, 1318017549, 19427531763, 333964672216, 6660282066936
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000088, A077269 (connected), A345249 (labeled), A039751 (complement). Row sums of A300756.

Extensions

2 more terms (from the McKay paper) from Vladeta Jovovic, May 17 2008
2 more terms from Brendan McKay, Mar 11 2018

A352472 Triangle T(n,k) read by rows: the number of traceless symmetric binary n X n matrices with 2k one's and no all-1 2 X 2 submatrix.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 1, 6, 15, 20, 12, 1, 10, 45, 120, 195, 162, 15, 1, 15, 105, 455, 1320, 2508, 2680, 900, 1, 21, 210, 1330, 5880, 18564, 40474, 54750, 35595, 6615, 1, 28, 378, 3276, 20265, 93240, 320040, 795120, 1333080, 1323840, 619920, 90720, 1, 36, 630, 7140, 58527, 364896
Offset: 1

Views

Author

R. J. Mathar, Mar 17 2022

Keywords

Comments

Symmetry and traceless mean that the number of 1's is always even; the corresponding zeros for odd numbers are not shown here.

Examples

			The triangle starts at 1 X 1 matrices and 0,2,4,... ones as
1: 1;
2: 1  1;
3: 1  3   3    1;
4: 1  6  15   20    12;
5: 1 10  45  120   195    162      15;
6: 1 15 105  455  1320   2508    2680     900;
7: 1 21 210 1330  5880  18564   40474   54750    35595     6615;
8: 1 28 378 3276 20265  93240  320040  795120  1333080  1323840   619920    90720;
9: 1 36 630 7140 58527 364896 1763076 6578640 18514935 37535932 50808870 40684140 15892065 1995840;
		

Crossrefs

Cf. A350189 (allows nonzero trace), A345249 (row sums), A006855 (row lengths minus 1), A191966 (rightmost values).

Formula

T(n,1) = A000217(n-1). - R. J. Mathar, Mar 25 2022
T(n,2) = 3*A000332(n+1). T(n,3) = A093566(n+1). - Conjectured by R. J. Mathar, Mar 25 2022; proved by Max Alekseyev, Apr 02 2022
G.f.: F(x,y) = Sum_{n,k} T(n,k)*(x^n/n!)*y^k = exp( Sum_G x^n(G) * y^e(G) / |Aut(G)| ), where G runs over the connected squarefree graphs (cf. A077269), n(G) and e(G) are the numbers of nodes and edges in G, and Aut(G) is the automorphism group of G. It follows that F(x,y) = exp(x) * (1 + (1/2)*x^2*y + ((1/2)*x^3 + (1/8)*x^4)*y^2 + ((1/6)*x^3 + (2/3)*x^4 + (1/4)*x^5 + (1/48)*x^6)*y^3 + O(y^4)), implying the above formulas for T(n,2) and T(n,3). - Max Alekseyev, Apr 02 2022

A352258 Number of symmetric binary n X n matrices with no 2 X 2 submatrix of all 1s.

Original entry on oeis.org

2, 7, 42, 399, 5614, 112221, 3102020, 116076057, 5774524092, 376068483351, 31643635513816, 3401292647423655, 462391295351625128, 78801283167350942685, 1775935516860530625139, 230933325874558862792569
Offset: 1

Views

Author

Brendan McKay, Mar 09 2022

Keywords

Comments

Equivalently, the number of labeled graphs (loops but not multiple edges allowed) with none of these subgraphs: 4-cycle, edge with a loop on each end, triangle with at least one loop.

Crossrefs

Row sums of A350189.
Cf. A345249 (traceless matrices).

A345248 Number of labeled connected simple graphs on n vertices without cycles of length 4.

Original entry on oeis.org

1, 1, 4, 28, 302, 4776, 106732, 3249352, 131290812, 6922560160, 470586936176, 40833342324864, 4482709905772936, 617622136930640128, 106013904370382120400, 22516967955697072408576, 5880701545642715236590608, 1877504184190590494772860928
Offset: 1

Views

Author

Brendan McKay, Jun 12 2021

Keywords

Comments

From R. J. Mathar, Apr 03 2022 (Start)
The sequence contains the row sums of the number of labeled connected simple graphs on V vertices with E edges, the triangle with V>=0, E>=0:
1 ;
1 ;
0 1;
0 0 3 1;
0 0 0 16 12;
0 0 0 0 125 162 15;
0 0 0 0 0 1296 2580 900;
0 0 0 0 0 0 16807 47715 35595 6615 ;
0 0 0 0 0 0 0 262144 1006488 1270080 619920 90720;
0 0 0 0 0 0 0 0 4782969 23859108 44893170 39867660 15892065 1995840 ;
(End)

Crossrefs

LOG transform of A345249.
A077269 counts isomorphism classes.
Cf. A345218.
Showing 1-4 of 4 results.