cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345266 a(n) = Sum_{p|n, p prime} gcd(p,n/p).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 1, 3, 5, 2, 3, 3, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 2, 3, 1, 3, 1, 3, 4, 2, 1, 3, 7, 6, 2, 3, 1, 4, 2, 3, 2, 2, 1, 4, 1, 2, 4, 2, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 6, 3, 2, 3, 1, 3, 3, 2, 1, 4, 2, 2, 2, 3, 1, 5, 2, 3, 2, 2, 2, 3, 1, 8, 4, 7, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 13 2021

Keywords

Examples

			a(18) = Sum_{p|18} gcd(p,18/p) = gcd(2,9) + gcd(3,6) = 1 + 3 = 4.
		

Crossrefs

Cf. A001221 (omega), A007947 (rad), A008472 (sopf), A345302.

Programs

  • Mathematica
    Table[Sum[GCD[k, n/k] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
  • PARI
    a(n) = my(f=factor(n), p); sum(k=1, #f~, p=f[k, 1]; gcd(p,n/p)); \\ Michel Marcus, Jun 16 2021
    
  • PARI
    A345266(n) = vecsum(apply(p->gcd(p,n/p), factor(n)[,1])); \\ Antti Karttunen, Nov 13 2021

Formula

a(p) = 1 for p prime.
From Wesley Ivan Hurt, Nov 21 2021: (Start)
a(n) = A056169(n) + A063958(n).
If n is squarefree, then a(n) = omega(n).
a(p^k) = p for primes p and k >= 2. (End)

Extensions

Data section extended up to 105 terms by Antti Karttunen, Nov 13 2021

A369915 a(n) = Sum_{p|n, p prime} lcm(p, n/p) / p.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 2, 1, 7, 1, 7, 1, 9, 8, 4, 1, 11, 1, 9, 10, 13, 1, 14, 1, 15, 3, 11, 1, 31, 1, 8, 14, 19, 12, 13, 1, 21, 16, 18, 1, 41, 1, 15, 14, 25, 1, 28, 1, 27, 20, 17, 1, 33, 16, 22, 22, 31, 1, 47, 1, 33, 16, 16, 18, 61, 1, 21, 26, 59, 1, 26, 1, 39, 28, 23, 18
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, LCM[#, n/#]/# &, PrimeQ[#] &], {n, 100}]

Formula

a(p^k) = p^(k-2+floor(1/k)) for p prime and k>=1. - Wesley Ivan Hurt, Jul 09 2025

A345304 a(n) = Sum_{p|n, p prime} p * lcm(p,n/p).

Original entry on oeis.org

0, 4, 9, 4, 25, 30, 49, 8, 9, 70, 121, 48, 169, 126, 120, 16, 289, 54, 361, 120, 210, 286, 529, 96, 25, 390, 27, 224, 841, 300, 961, 32, 462, 646, 420, 72, 1369, 798, 624, 240, 1681, 504, 1849, 528, 270, 1150, 2209, 192, 49, 150, 1020, 728, 2809, 162, 880, 448, 1254, 1798, 3481
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 13 2021

Keywords

Comments

If p is prime, a(p) = Sum_{p|p} p * lcm(p,p/p) = p * p = p^2.

Examples

			a(18) = Sum_{p|18} p * lcm(p,18/p) = 2*lcm(2,9) + 3*lcm(3,6) = 2*18 + 3*6 = 54.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k*LCM[k, n/k] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]

A345306 a(n) = n * Sum_{p|n, p prime} lcm(p,n/p) / p.

Original entry on oeis.org

0, 2, 3, 4, 5, 30, 7, 16, 9, 70, 11, 84, 13, 126, 120, 64, 17, 198, 19, 180, 210, 286, 23, 336, 25, 390, 81, 308, 29, 930, 31, 256, 462, 646, 420, 468, 37, 798, 624, 720, 41, 1722, 43, 660, 630, 1150, 47, 1344, 49, 1350, 1020, 884, 53, 1782, 880, 1232, 1254, 1798, 59
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 13 2021

Keywords

Comments

If p is prime, a(p) = p * Sum_{p|p} lcm(p,p/p) / p = p * p/p = p.

Examples

			a(18) = 18 * Sum_{p|18} lcm(p,18/p) / p = 18 * (lcm(2,9)/2 + lcm(3,6)/3) = 18 * (9 + 2) = 198.
		

Crossrefs

Cf. A345302.

Programs

  • Mathematica
    Table[n*Sum[(1/k) LCM[k, n/k] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]

A351747 a(n) = Sum_{p|n, p prime} n^lcm(p,n/p).

Original entry on oeis.org

0, 4, 27, 16, 3125, 93312, 823543, 4096, 729, 20000000000, 285311670611, 8916103434240, 302875106592253, 22224013651116032, 875787780761718750, 4294967296, 827240261886336764177, 39346408075296571587648, 1978419655660313589123979, 104857600000010240000000000
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 17 2022

Keywords

Examples

			a(6) = 93312; a(6) = Sum_{p|6, p prime} 6^lcm(p,6/p) = 6^lcm(2,6/2) + 6^lcm(3,6/3) = 6^6 + 6^6 = 93312.
		

Crossrefs

Cf. A345302.
Showing 1-5 of 5 results.