cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345320 Sum of the divisors of n whose square does not divide n.

Original entry on oeis.org

0, 2, 3, 4, 5, 11, 7, 12, 9, 17, 11, 25, 13, 23, 23, 24, 17, 35, 19, 39, 31, 35, 23, 57, 25, 41, 36, 53, 29, 71, 31, 56, 47, 53, 47, 79, 37, 59, 55, 87, 41, 95, 43, 81, 74, 71, 47, 117, 49, 87, 71, 95, 53, 116, 71, 117, 79, 89, 59, 165, 61, 95, 100, 112, 83, 143, 67, 123, 95, 143, 71, 183, 73, 113, 118, 137, 95, 167, 79, 179, 108, 125, 83
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 13 2021

Keywords

Comments

Inverse Möbius transform of n+n^(1/2)*((-1)^tau(n)-1)/2. - Wesley Ivan Hurt, Jul 07 2025

Examples

			a(16) = 24; The divisors of 16 whose square does not divide 16 are 8 and 16. The sum of the divisors is then 8 + 16 = 24.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A056595, A069290.

Programs

  • Mathematica
    Table[Sum[k (Ceiling[n/k^2] - Floor[n/k^2]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
    sdnd[n_]:=Total[Select[Divisors[n],Mod[n,#^2]!=0&]]; Array[sdnd,100] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = sumdiv(n, d, if (n % d^2, d)); \\ Michel Marcus, Jun 13 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A345320(n):
        f = factorint(n).items()
        return (prod(p**(q+1)-1 for p, q in f) - prod(p**(q//2+1)-1 for p, q in f))//prod(p-1 for p, q in f) # Chai Wah Wu, Jun 14 2021

Formula

a(n) = Sum_{k=1..n} k * (ceiling(n/k^2) - floor(n/k^2)) * (1 - ceiling(n/k) + floor(n/k)).
a(n) = A000203(n) - A069290(n). - Rémy Sigrist, Jun 14 2021
a(n) = Sum_{d|n} (d+d^(1/2)*((-1)^tau(d)-1)/2). - Wesley Ivan Hurt, Jul 07 2025