A345366 a(n) = (p*q+1) mod (p+q) where p=prime(n) and q=prime(n+1).
2, 0, 0, 6, 0, 12, 0, 18, 44, 0, 60, 36, 0, 42, 92, 104, 0, 120, 66, 0, 144, 78, 164, 78, 96, 0, 102, 0, 108, 192, 126, 260, 0, 264, 0, 300, 312, 162, 332, 344, 0, 348, 0, 192, 0, 170, 182, 222, 0, 228, 464, 0, 468, 500, 512, 524, 0, 540, 276, 0, 552, 552, 306
Offset: 1
Keywords
Examples
a(1) = ( 2* 3+1) mod ( 2+ 3) = 7 mod 5 = 2, a(2) = ( 3* 5+1) mod ( 3+ 5) = 16 mod 8 = 0, a(3) = ( 5* 7+1) mod ( 5+ 7) = 36 mod 12 = 0, a(4) = ( 7*11+1) mod ( 7+11) = 78 mod 18 = 6, a(5) = (11*13+1) mod (11+13) = 144 mod 24 = 0.
Programs
-
Maple
a:= n-> ((p, q)-> irem(p*q+1, p+q))(map(ithprime, [n, n+1])[]): seq(a(n), n=1..63); # Alois P. Heinz, Jul 03 2021
-
Mathematica
Mod[#1*#2 + 1, #1 + #2] & @@@ Partition[Select[Range[300], PrimeQ], 2, 1] (* Amiram Eldar, Jun 16 2021 *)
-
PARI
a(n)=my(p=prime(n), q=nextprime(p+1)); (p*q+1)%(p+q)
-
Python
from sympy import nextprime def aupton(nn): alst, p, q = [], 2, 3 while len(alst) < nn: alst.append((p*q+1)%(p+q)); p, q = q, nextprime(q) return alst print(aupton(62)) # Michael S. Branicky, Jun 16 2021
-
Ruby
require 'prime' values = [] Prime.first(21).each_cons(2) do |a, b| values << (a * b + 1) % (a + b) end p values
Comments