A345497 Numbers that are the sum of eight squares in ten or more ways.
70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131
Offset: 1
Keywords
Examples
71 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 8^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 5^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 7^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 6^2 = 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 = 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2 + 4^2 so 71 is a term.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 10]) for x in range(len(rets)): print(rets[x])
-
Python
def A345397(n): return (70, 71, 73, 74, 77, 78, 79, 80, 82, 83)[n-1] if n<11 else n+74 # Chai Wah Wu, May 09 2024
Formula
From Chai Wah Wu, May 09 2024: (Start)
All integers >= 85 are terms. Proof: since 594 can be written as the sum of 3 positive squares in 10 ways (see A025427) and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 628 can be written as a sum of 8 positive squares in 10 or more ways. Integers from 85 to 627 are terms by inspection.
a(n) = 2*a(n-1) - a(n-2) for n > 12.
G.f.: x*(-x^11 + x^10 - x^9 + x^8 - 2*x^5 + 2*x^4 - x^3 + x^2 - 69*x + 70)/(x - 1)^2. (End)
Comments