A345493 Numbers that are the sum of eight squares in six or more ways.
56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1
Keywords
Examples
58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 5^2.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 6]) for x in range(len(rets)): print(rets[x])
Formula
Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 11.
G.f.: x*(-x^10 + x^9 - x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - x^2 - 54*x + 56)/(x - 1)^2. (End)