cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345536 Numbers that are the sum of eight cubes in six or more ways.

Original entry on oeis.org

628, 719, 769, 776, 778, 795, 832, 839, 846, 858, 860, 865, 872, 875, 876, 882, 886, 891, 893, 895, 901, 902, 907, 908, 912, 921, 927, 928, 931, 938, 945, 946, 947, 951, 954, 956, 958, 963, 964, 965, 970, 972, 977, 982, 984, 989, 991, 992, 996, 998, 999, 1001
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			719 is a term because 719 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A345483 Numbers that are the sum of seven squares in six or more ways.

Original entry on oeis.org

55, 58, 61, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 = 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

Formula

Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 9.
G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 52*x + 55)/(x - 1)^2. (End)

A345492 Numbers that are the sum of eight squares in five or more ways.

Original entry on oeis.org

46, 47, 49, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			47 is a term because 47 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345494 Numbers that are the sum of eight squares in seven or more ways.

Original entry on oeis.org

56, 59, 62, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			59 is a term because 59 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 = 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345503 Numbers that are the sum of nine squares in six or more ways.

Original entry on oeis.org

48, 56, 57, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Comments

Numbers n such that A025433(n) >= 6. - David A. Corneth, Apr 26 2024

Examples

			56 is a term because 56 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 4^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 5^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

Formula

Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 9.
G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - 7*x^2 - 40*x + 48)/(x - 1)^2. (End)
Showing 1-5 of 5 results.