cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345524 Numbers that are the sum of seven cubes in six or more ways.

Original entry on oeis.org

955, 969, 1046, 1053, 1072, 1079, 1107, 1117, 1121, 1158, 1161, 1170, 1177, 1184, 1196, 1198, 1216, 1222, 1235, 1242, 1254, 1261, 1268, 1272, 1280, 1287, 1291, 1294, 1297, 1298, 1305, 1310, 1324, 1350, 1351, 1355, 1366, 1369, 1376, 1378, 1385, 1388, 1392
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			969 is a term because 969 = 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A344810 Numbers that are the sum of six squares in six or more ways.

Original entry on oeis.org

54, 57, 60, 62, 65, 68, 69, 71, 72, 75, 76, 77, 78, 80, 81, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			57 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2
   = 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2
   = 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2
   = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2
so 57 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

Formula

Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 24.
G.f.: x*(-x^23 + x^22 - x^18 + x^17 - x^16 + x^15 - x^14 + x^13 - 2*x^10 + 2*x^9 - x^8 + x^7 - 2*x^6 + x^4 - x^3 - 51*x + 54)/(x - 1)^2. (End)

A345482 Numbers that are the sum of seven squares in five or more ways.

Original entry on oeis.org

45, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			54 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 4^2 + 5^2
   = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2
   = 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2
   = 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 5^2
so 54 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

Formula

Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 13.
G.f.: x*(-x^12 + x^11 - x^10 + x^9 - x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - 8*x^2 - 36*x + 45)/(x - 1)^2. (End)

A345484 Numbers that are the sum of seven squares in seven or more ways.

Original entry on oeis.org

55, 58, 61, 63, 64, 66, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 = 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

Formula

Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 21.
G.f.: x*(-x^20 + x^19 - x^9 + x^8 - 2*x^7 + x^6 + x^5 - x^4 - x^3 - 52*x + 55)/(x - 1)^2. (End)

A345493 Numbers that are the sum of eight squares in six or more ways.

Original entry on oeis.org

56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 5^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

Formula

Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 11.
G.f.: x*(-x^10 + x^9 - x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - x^2 - 54*x + 56)/(x - 1)^2. (End)
Showing 1-5 of 5 results.