A345515 Numbers that are the sum of six cubes in six or more ways.
1377, 1488, 1586, 1595, 1647, 1673, 1677, 1710, 1738, 1764, 1766, 1773, 1799, 1829, 1836, 1837, 1862, 1881, 1890, 1911, 1953, 1955, 1981, 1988, 2007, 2011, 2014, 2018, 2025, 2044, 2051, 2070, 2079, 2097, 2105, 2107, 2108, 2142, 2153, 2160, 2168, 2170, 2177
Offset: 1
Keywords
Examples
1488 is a term because 1488 = 1^3 + 1^3 + 1^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 6]) for x in range(len(rets)): print(rets[x])
Comments