cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345516 Numbers that are the sum of six cubes in seven or more ways.

Original entry on oeis.org

1710, 1766, 1773, 1981, 1988, 2051, 2105, 2160, 2168, 2196, 2249, 2251, 2259, 2277, 2314, 2322, 2349, 2368, 2375, 2376, 2417, 2424, 2431, 2438, 2457, 2466, 2480, 2492, 2494, 2513, 2520, 2531, 2538, 2539, 2548, 2555, 2557, 2564, 2565, 2574, 2583, 2593, 2611
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345524 Numbers that are the sum of seven cubes in six or more ways.

Original entry on oeis.org

955, 969, 1046, 1053, 1072, 1079, 1107, 1117, 1121, 1158, 1161, 1170, 1177, 1184, 1196, 1198, 1216, 1222, 1235, 1242, 1254, 1261, 1268, 1272, 1280, 1287, 1291, 1294, 1297, 1298, 1305, 1310, 1324, 1350, 1351, 1355, 1366, 1369, 1376, 1378, 1385, 1388, 1392
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			969 is a term because 969 = 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A345526 Numbers that are the sum of seven cubes in eight or more ways.

Original entry on oeis.org

1385, 1496, 1515, 1552, 1557, 1585, 1587, 1603, 1613, 1622, 1648, 1655, 1665, 1674, 1681, 1704, 1711, 1718, 1719, 1720, 1737, 1739, 1741, 1746, 1753, 1755, 1765, 1767, 1772, 1774, 1781, 1782, 1793, 1800, 1802, 1805, 1809, 1811, 1818, 1819, 1826, 1828, 1830
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1496 is a term because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345537 Numbers that are the sum of eight cubes in seven or more ways.

Original entry on oeis.org

902, 908, 921, 938, 958, 963, 970, 977, 982, 984, 991, 996, 1003, 1008, 1010, 1017, 1019, 1028, 1029, 1033, 1047, 1054, 1055, 1058, 1061, 1062, 1070, 1073, 1075, 1080, 1087, 1090, 1091, 1094, 1096, 1097, 1099, 1104, 1106, 1108, 1110, 1111, 1113, 1115, 1116
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			908 is a term because 908 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345573 Numbers that are the sum of seven fourth powers in seven or more ways.

Original entry on oeis.org

16691, 17347, 17971, 19491, 20706, 21252, 21267, 21332, 21507, 21636, 21876, 21956, 22547, 22612, 23156, 23587, 23652, 23827, 23892, 24436, 25107, 25347, 25427, 25716, 25971, 26051, 27812, 29092, 29187, 29332, 29427, 29442, 29636, 29701, 29716, 29956, 29971
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			17347 is a term because 17347 = 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 + 9^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345779 Numbers that are the sum of seven cubes in exactly seven ways.

Original entry on oeis.org

1072, 1170, 1235, 1261, 1268, 1305, 1392, 1396, 1411, 1440, 1441, 1448, 1450, 1459, 1489, 1502, 1504, 1513, 1538, 1540, 1547, 1559, 1564, 1565, 1566, 1567, 1576, 1592, 1593, 1594, 1600, 1602, 1606, 1620, 1621, 1625, 1626, 1628, 1629, 1639, 1658, 1664, 1667
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345525 at term 7 because 1385 = 1^3 + 1^3 + 2^3 + 2^3 + 7^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 10^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 10^3 = 1^3 + 2^3 + 6^3 + 6^3 + 6^3 + 6^3 + 8^3 = 1^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 8^3 = 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 8^3 + 8^3.
Likely finite.

Examples

			1170 is a term because 1170 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3 = 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A345484 Numbers that are the sum of seven squares in seven or more ways.

Original entry on oeis.org

55, 58, 61, 63, 64, 66, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 = 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

Formula

Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 21.
G.f.: x*(-x^20 + x^19 - x^9 + x^8 - 2*x^7 + x^6 + x^5 - x^4 - x^3 - 52*x + 55)/(x - 1)^2. (End)
Showing 1-7 of 7 results.