cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345525 Numbers that are the sum of seven cubes in seven or more ways.

Original entry on oeis.org

1072, 1170, 1235, 1261, 1268, 1305, 1385, 1392, 1396, 1411, 1440, 1441, 1448, 1450, 1459, 1489, 1496, 1502, 1504, 1513, 1515, 1538, 1540, 1547, 1552, 1557, 1559, 1564, 1565, 1566, 1567, 1576, 1585, 1587, 1592, 1593, 1594, 1600, 1602, 1603, 1606, 1613, 1620
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1170 is a term because 1170 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3 = 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])