cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003344 Numbers that are the sum of 10 positive 4th powers.

Original entry on oeis.org

10, 25, 40, 55, 70, 85, 90, 100, 105, 115, 120, 130, 135, 145, 150, 160, 165, 170, 180, 185, 195, 200, 210, 215, 225, 230, 245, 250, 260, 265, 275, 280, 290, 295, 310, 325, 330, 340, 345, 355, 360, 370, 375, 385, 390, 400, 405, 410, 420, 425, 435, 440, 450, 455, 465
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
5176 is in the sequence as 5176 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 5^4 + 5^4 + 5^4 + 5^4 + 7^4.
6901 is in the sequence as 6901 = 1^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4 + 6^4 + 6^4.
8502 is in the sequence as 8502 = 1^4 + 3^4 + 4^4 + 5^4 + 5^4 + 5^4 + 6^4 + 6^4 + 6^4 + 7^4. (End)
		

Crossrefs

Programs

  • Python
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(limit):
        pows4 = list(takewhile(lambda x: x <= limit, (i**4 for i in count(1))))
        sum10 = set(sum(c) for c in mc(pows4, 10) if sum(c) <= limit)
        return sorted(sum10)
    print(aupto(465)) # Michael S. Branicky, Oct 25 2021

A345586 Numbers that are the sum of nine fourth powers in two or more ways.

Original entry on oeis.org

264, 279, 294, 309, 324, 339, 344, 359, 374, 389, 404, 424, 439, 454, 469, 504, 519, 534, 549, 564, 579, 584, 599, 614, 629, 644, 664, 679, 694, 709, 759, 774, 789, 804, 819, 839, 854, 869, 884, 888, 903, 918, 933, 934, 948, 949, 968, 983, 998, 1013, 1014
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			279 is a term because 279 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345596 Numbers that are the sum of ten fourth powers in three or more ways.

Original entry on oeis.org

520, 535, 550, 600, 615, 680, 775, 790, 855, 1030, 1144, 1159, 1224, 1365, 1380, 1399, 1445, 1540, 1555, 1605, 1620, 1635, 1685, 1700, 1768, 1795, 1815, 1830, 1860, 1875, 1895, 1989, 2070, 2164, 2229, 2244, 2439, 2485, 2580, 2595, 2645, 2660, 2675, 2680, 2695
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			535 is a term because 535 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345854 Numbers that are the sum of ten fourth powers in exactly two ways.

Original entry on oeis.org

265, 280, 295, 310, 325, 340, 345, 355, 360, 375, 390, 405, 420, 425, 440, 455, 470, 485, 505, 565, 580, 585, 595, 630, 645, 660, 665, 695, 710, 725, 745, 760, 805, 820, 835, 840, 870, 885, 889, 900, 904, 919, 920, 934, 935, 949, 950, 964, 965, 969, 984, 999
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345595 at term 20 because 520 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.

Examples

			280 is a term because 280 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345550 Numbers that are the sum of ten cubes in two or more ways.

Original entry on oeis.org

73, 80, 99, 134, 136, 141, 148, 155, 160, 162, 167, 169, 174, 176, 183, 186, 188, 190, 192, 193, 195, 197, 199, 202, 204, 206, 209, 211, 212, 213, 214, 216, 218, 221, 223, 225, 228, 230, 232, 235, 239, 240, 244, 246, 247, 249, 251, 253, 254, 258, 260, 262
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			80 is a term because 80 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345634 Numbers that are the sum of ten fifth powers in two or more ways.

Original entry on oeis.org

4102, 4133, 4164, 4195, 4226, 4257, 4344, 4375, 4406, 4437, 4468, 4586, 4617, 4648, 4679, 4828, 4859, 4890, 5070, 5101, 5125, 5156, 5187, 5218, 5249, 5312, 5367, 5398, 5429, 5460, 5609, 5640, 5671, 5851, 5882, 6093, 6148, 6179, 6210, 6241, 6390, 6421, 6452
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4133 is a term because 4133 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.