cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003354 Numbers that are the sum of 9 positive 5th powers.

Original entry on oeis.org

9, 40, 71, 102, 133, 164, 195, 226, 251, 257, 282, 288, 313, 344, 375, 406, 437, 468, 493, 499, 524, 555, 586, 617, 648, 679, 710, 735, 766, 797, 828, 859, 890, 921, 977, 1008, 1032, 1039, 1063, 1070, 1094, 1101, 1125, 1132, 1156, 1187, 1218, 1219, 1249, 1250, 1274
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
23946 is in the sequence as 23946 = 2^5 + 2^5 + 2^5 + 4^5 + 4^5 + 5^5 + 5^5 + 6^5 + 6^5.
28955 is in the sequence as 28955 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 7^5.
44054 is in the sequence as 44054 = 1^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5. (End)
		

Crossrefs

A345586 Numbers that are the sum of nine fourth powers in two or more ways.

Original entry on oeis.org

264, 279, 294, 309, 324, 339, 344, 359, 374, 389, 404, 424, 439, 454, 469, 504, 519, 534, 549, 564, 579, 584, 599, 614, 629, 644, 664, 679, 694, 709, 759, 774, 789, 804, 819, 839, 854, 869, 884, 888, 903, 918, 933, 934, 948, 949, 968, 983, 998, 1013, 1014
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			279 is a term because 279 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345610 Numbers that are the sum of eight fifth powers in two or more ways.

Original entry on oeis.org

4100, 4131, 4162, 4193, 4342, 4373, 4404, 4584, 4615, 4826, 5123, 5154, 5185, 5365, 5396, 5607, 6146, 6177, 6388, 7169, 7224, 7255, 7286, 7466, 7497, 7708, 8247, 8278, 8489, 9270, 10348, 10379, 10590, 11371, 11875, 11906, 11937, 12117, 12148, 12359, 12898
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4131 is a term because 4131 = 1^5 + 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345620 Numbers that are the sum of nine fifth powers in three or more ways.

Original entry on oeis.org

52418, 52449, 52660, 53441, 54519, 54550, 54761, 55542, 55690, 57643, 60193, 62294, 69224, 69635, 69666, 69877, 70658, 70955, 70986, 71197, 71325, 71978, 72759, 73001, 74079, 76031, 77410, 78730, 84162, 84459, 84490, 84521, 84701, 84732, 84943, 85185, 85482
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			52449 is a term because 52449 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A346337 Numbers that are the sum of nine fifth powers in exactly two ways.

Original entry on oeis.org

4101, 4132, 4163, 4194, 4225, 4343, 4374, 4405, 4436, 4585, 4616, 4647, 4827, 4858, 5069, 5124, 5155, 5186, 5217, 5366, 5397, 5428, 5608, 5639, 5850, 6147, 6178, 6209, 6389, 6420, 6631, 7170, 7201, 7225, 7256, 7287, 7318, 7412, 7467, 7498, 7529, 7709, 7740
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345619 at term 306 because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.

Examples

			4101 is a term because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345634 Numbers that are the sum of ten fifth powers in two or more ways.

Original entry on oeis.org

4102, 4133, 4164, 4195, 4226, 4257, 4344, 4375, 4406, 4437, 4468, 4586, 4617, 4648, 4679, 4828, 4859, 4890, 5070, 5101, 5125, 5156, 5187, 5218, 5249, 5312, 5367, 5398, 5429, 5460, 5609, 5640, 5671, 5851, 5882, 6093, 6148, 6179, 6210, 6241, 6390, 6421, 6452
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4133 is a term because 4133 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.