cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003353 Numbers that are the sum of 8 positive 5th powers.

Original entry on oeis.org

8, 39, 70, 101, 132, 163, 194, 225, 250, 256, 281, 312, 343, 374, 405, 436, 467, 492, 523, 554, 585, 616, 647, 678, 734, 765, 796, 827, 858, 889, 976, 1007, 1031, 1038, 1062, 1069, 1093, 1100, 1124, 1155, 1186, 1217, 1218, 1248, 1249, 1273, 1280, 1304, 1311, 1335, 1366
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
32373 is in the sequence as 32373 = 1^5 + 1^5 + 3^5 + 4^5 + 6^5 + 6^5 + 6^5 + 6^5.
42605 is in the sequence as 42605 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 6^5 + 7^5 + 7^5.
58030 is in the sequence as 58030 = 2^5 + 2^5 + 4^5 + 6^5 + 6^5 + 6^5 + 7^5 + 7^5. (End)
		

Crossrefs

A345577 Numbers that are the sum of eight fourth powers in two or more ways.

Original entry on oeis.org

263, 278, 293, 308, 323, 343, 358, 373, 388, 423, 438, 453, 503, 518, 533, 548, 563, 583, 598, 613, 628, 678, 693, 758, 773, 788, 803, 853, 868, 887, 902, 917, 932, 933, 967, 982, 997, 1028, 1043, 1047, 1062, 1108, 1127, 1142, 1157, 1172, 1222, 1237, 1283
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			278 is a term because 278 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345605 Numbers that are the sum of seven fifth powers in two or more ways.

Original entry on oeis.org

4099, 4130, 4161, 4341, 4372, 4583, 5122, 5153, 5364, 6145, 7223, 7254, 7465, 8246, 10347, 11874, 11905, 12116, 12897, 14998, 19649, 20905, 20936, 21147, 21928, 24029, 28680, 36866, 36897, 37108, 37711, 37889, 39990, 40138, 44641, 51393, 51448, 51479, 51510
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4130 is a term because 4130 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345611 Numbers that are the sum of eight fifth powers in three or more ways.

Original entry on oeis.org

52417, 54518, 69634, 70954, 84458, 84489, 84700, 85481, 87582, 92233, 101264, 102890, 112574, 117225, 119326, 134473, 143264, 143442, 143506, 149781, 151448, 158719, 159465, 165634, 166998, 167029, 167196, 167240, 168021, 170122, 174773, 183804, 184457
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			54518 is a term because 54518 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 7^5 + 7^5 + 7^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345619 Numbers that are the sum of nine fifth powers in two or more ways.

Original entry on oeis.org

4101, 4132, 4163, 4194, 4225, 4343, 4374, 4405, 4436, 4585, 4616, 4647, 4827, 4858, 5069, 5124, 5155, 5186, 5217, 5366, 5397, 5428, 5608, 5639, 5850, 6147, 6178, 6209, 6389, 6420, 6631, 7170, 7201, 7225, 7256, 7287, 7318, 7412, 7467, 7498, 7529, 7709, 7740
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4132 is a term because 4132 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A346327 Numbers that are the sum of eight fifth powers in exactly two ways.

Original entry on oeis.org

4100, 4131, 4162, 4193, 4342, 4373, 4404, 4584, 4615, 4826, 5123, 5154, 5185, 5365, 5396, 5607, 6146, 6177, 6388, 7169, 7224, 7255, 7286, 7466, 7497, 7708, 8247, 8278, 8489, 9270, 10348, 10379, 10590, 11371, 11875, 11906, 11937, 12117, 12148, 12359, 12898
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345610 at term 128 because 52417 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.

Examples

			4100 is a term because 4100 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.