cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345602 Numbers that are the sum of ten fourth powers in nine or more ways.

Original entry on oeis.org

6820, 6870, 6885, 6950, 7060, 7110, 7125, 7285, 7350, 7860, 7925, 7990, 8020, 8035, 8100, 8165, 8230, 8245, 8260, 8275, 8325, 8340, 8390, 8405, 8515, 8565, 8580, 8645, 8755, 8820, 8884, 8965, 8995, 9030, 9045, 9060, 9075, 9125, 9140, 9205, 9220, 9235, 9270
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6870 is a term because 6870 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345626 Numbers that are the sum of nine fifth powers in nine or more ways.

Original entry on oeis.org

1969221, 2596936, 3353186, 3378178, 3923426, 3981447, 4094027, 4096729, 4112329, 4114188, 4129465, 4137209, 4147736, 4157156, 4170112, 4172994, 4254304, 4303773, 4410482, 4475846, 4477936, 4483379, 4485480, 4492410, 4501441, 4510461, 4543232, 4652011, 4691855
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2596936 is a term because 2596936 = 1^5 + 1^5 + 4^5 + 5^5 + 9^5 + 13^5 + 13^5 + 13^5 + 17^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 17^5 = 1^5 + 4^5 + 7^5 + 7^5 + 7^5 + 9^5 + 9^5 + 14^5 + 18^5 = 1^5 + 5^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 12^5 + 13^5 + 14^5 + 17^5 = 2^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 15^5 + 15^5 + 16^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 11^5 + 11^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 8^5 + 9^5 + 16^5 + 17^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345640 Numbers that are the sum of ten fifth powers in eight or more ways.

Original entry on oeis.org

944383, 953139, 953414, 985453, 1118585, 1151438, 1185375, 1192180, 1198879, 1206546, 1209912, 1216569, 1217172, 1218912, 1223321, 1225398, 1226654, 1234631, 1241834, 1242437, 1251195, 1251406, 1252123, 1259685, 1265563, 1265594, 1267937, 1275375, 1281736
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			953139 is a term because 953139 = 1^5 + 1^5 + 1^5 + 3^5 + 8^5 + 10^5 + 10^5 + 10^5 + 12^5 + 13^5 = 1^5 + 2^5 + 2^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 12^5 + 14^5 = 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 12^5 + 12^5 + 13^5 = 2^5 + 2^5 + 3^5 + 3^5 + 7^5 + 7^5 + 9^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 11^5 + 11^5 + 12^5 + 13^5 = 2^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 10^5 + 10^5 + 13^5 + 13^5 = 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 + 15^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A346354 Numbers that are the sum of ten fifth powers in exactly nine ways.

Original entry on oeis.org

1192180, 1226654, 1242437, 1431399, 1431430, 1431672, 1431883, 1432453, 1432664, 1434765, 1439174, 1441695, 1442718, 1447602, 1448447, 1455346, 1455377, 1464166, 1474431, 1474462, 1475485, 1491978, 1497619, 1531429, 1539173, 1614736, 1671199, 1671410, 1672937
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345641 at term 6 because 1431641 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 1^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 1^5 + 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 1^5 + 1^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 3^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 3^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.

Examples

			1192180 is a term because 1192180 = 5^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 16^5 = 2^5 + 5^5 + 5^5 + 5^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 16^5 = 3^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 8^5 + 13^5 + 15^5 = 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 7^5 + 7^5 + 13^5 + 15^5 = 2^5 + 2^5 + 2^5 + 3^5 + 8^5 + 8^5 + 9^5 + 9^5 + 12^5 + 15^5 = 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 12^5 + 13^5 + 13^5 = 1^5 + 2^5 + 2^5 + 2^5 + 4^5 + 11^5 + 11^5 + 12^5 + 12^5 + 13^5 = 6^5 + 9^5 + 9^5 + 10^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345642 Numbers that are the sum of ten fifth powers in ten or more ways.

Original entry on oeis.org

1431641, 1439416, 1464377, 1464408, 1505660, 1531398, 1531640, 1564165, 1697929, 1703935, 1782171, 1969222, 1969253, 1969464, 1976997, 1985183, 1986028, 2000966, 2001989, 2028270, 2042460, 2052415, 2058421, 2059202, 2060522, 2069221, 2076393, 2130272, 2182162
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1439416 is a term because 1439416 = 1^5 + 1^5 + 2^5 + 7^5 + 8^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 = 1^5 + 2^5 + 3^5 + 6^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 2^5 + 2^5 + 3^5 + 4^5 + 6^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 3^5 + 6^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 7^5 + 11^5 + 11^5 + 16^5 = 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.