cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345601 Numbers that are the sum of ten fourth powers in eight or more ways.

Original entry on oeis.org

6675, 6740, 6755, 6805, 6820, 6870, 6885, 6950, 6995, 7015, 7030, 7045, 7060, 7095, 7110, 7125, 7270, 7285, 7300, 7350, 7365, 7429, 7494, 7525, 7540, 7590, 7605, 7750, 7780, 7845, 7860, 7925, 7955, 7990, 8005, 8020, 8035, 8085, 8100, 8150, 8165, 8195, 8215
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6740 is a term because 6740 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345625 Numbers that are the sum of nine fifth powers in eight or more ways.

Original entry on oeis.org

1431398, 1431640, 1531397, 1952415, 1969221, 2247917, 2530399, 2596936, 2652563, 2652860, 2736790, 2851254, 2965588, 3088909, 3148674, 3273590, 3297416, 3329120, 3329362, 3332244, 3336895, 3345442, 3345653, 3353186, 3361614, 3362217, 3364738, 3378178, 3553641
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1431640 is a term because 1431640 = 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 2^5 + 2^5 + 3^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345639 Numbers that are the sum of ten fifth powers in seven or more ways.

Original entry on oeis.org

555098, 674040, 683166, 707315, 763631, 777852, 778844, 780945, 783224, 893654, 896500, 897668, 920887, 926616, 927819, 928802, 936850, 937631, 944383, 945017, 952897, 953077, 953139, 953350, 953414, 955178, 963131, 975133, 979482, 984133, 985453, 985664
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			674040 is a term because 674040 = 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 7^5 + 9^5 + 10^5 + 12^5 + 12^5 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 = 1^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 = 1^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 = 2^5 + 2^5 + 2^5 + 2^5 + 4^5 + 6^5 + 8^5 + 10^5 + 11^5 + 13^5 = 2^5 + 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 6^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 7^5 + 8^5 + 12^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345641 Numbers that are the sum of ten fifth powers in nine or more ways.

Original entry on oeis.org

1192180, 1226654, 1242437, 1431399, 1431430, 1431641, 1431672, 1431883, 1432453, 1432664, 1434765, 1439174, 1439416, 1441695, 1442718, 1447602, 1448447, 1455346, 1455377, 1464166, 1464377, 1464408, 1474431, 1474462, 1475485, 1491978, 1497619, 1505660, 1531398
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1226654 is a term because 1226654 = 1^5 + 1^5 + 4^5 + 5^5 + 7^5 + 8^5 + 9^5 + 13^5 + 13^5 + 13^5 = 1^5 + 1^5 + 5^5 + 7^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 = 1^5 + 2^5 + 2^5 + 4^5 + 6^5 + 10^5 + 12^5 + 12^5 + 12^5 + 13^5 = 1^5 + 2^5 + 2^5 + 4^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 14^5 = 1^5 + 3^5 + 3^5 + 3^5 + 7^5 + 10^5 + 10^5 + 10^5 + 13^5 + 14^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 7^5 + 8^5 + 12^5 + 13^5 + 14^5 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 5^5 + 10^5 + 13^5 + 13^5 + 13^5 = 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 8^5 + 9^5 + 16^5 = 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 8^5 + 9^5 + 16^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A346353 Numbers that are the sum of ten fifth powers in exactly eight ways.

Original entry on oeis.org

944383, 953139, 953414, 985453, 1118585, 1151438, 1185375, 1198879, 1206546, 1209912, 1216569, 1217172, 1218912, 1223321, 1225398, 1234631, 1241834, 1251195, 1251406, 1252123, 1259685, 1265563, 1265594, 1267937, 1275375, 1281736, 1295418, 1297697, 1298088
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345640 at term 8 because 1192180 = 5^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 16^5 = 2^5 + 5^5 + 5^5 + 5^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 16^5 = 3^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 8^5 + 13^5 + 15^5 = 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 7^5 + 7^5 + 13^5 + 15^5 = 2^5 + 2^5 + 2^5 + 3^5 + 8^5 + 8^5 + 9^5 + 9^5 + 12^5 + 15^5 = 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 12^5 + 13^5 + 13^5 = 1^5 + 2^5 + 2^5 + 2^5 + 4^5 + 11^5 + 11^5 + 12^5 + 12^5 + 13^5 = 6^5 + 9^5 + 9^5 + 10^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5.

Examples

			944383 is a term because 944383 = 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 5^5 + 5^5 + 7^5 + 7^5 + 7^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.