cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345652 Expansion of the e.g.f. exp(-1 + (x + 1)*exp(-x)).

Original entry on oeis.org

1, 0, -1, 2, 0, -16, 65, -78, -749, 6232, -22068, -28920, 1004685, -7408740, 22263215, 157632230, -2874256740, 21590948480, -53087332675, -956539294506, 16344490525835, -132605481091060, 294656170409328, 9113173803517344, -167298122286332823
Offset: 0

Views

Author

Mélika Tebni, Jun 21 2021

Keywords

Comments

For all p prime, a(p)/(p-1) == 1 (mod p). - Mélika Tebni, Mar 21 2022

Examples

			exp(-1+(x+1)*exp(-x)) = 1 - x^2/2! + 2*x^3/3! - 16*x^5/5! + 65*x^6/6! - 78*x^7/7! - 749*x^8/8! + 6232*x^9/9! + ...
		

Crossrefs

Cf. A292935 (without 1+x: EGF e^(e^(-x)-1)), A000110 (absolute values: Bell numbers, EGF e^(e^x-1))

Programs

  • Maple
    a := series(exp(-1+(x+1)*exp(-x)), x=0, 25): seq(n!*coeff(a, x, n), n=0..24);
    a := proc(n) option remember; `if`(n=0, 1, add((n-1)*binomial(n-2, k)*(-1)^(n-1-k)*a(k), k=0..n-2)) end: seq(a(n), n=0..24);
    # third program:
    A345652 := n -> add((-1)^(n-k)*combinat[bell](k)*A106828(n, k), k=0..iquo(n, 2)):
    seq(A345652(n), n=0..24); # Mélika Tebni, Sep 21 2021
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[-1+(x+1)*Exp[-x]], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n) = {Vec(serlaplace(exp(-1+(x+1)*exp(-x + O(x*x^n)))))} \\ Andrew Howroyd, Jun 21 2021
    
  • PARI
    a(n) = if(n==0, 1, sum(k=2, n, (-1)^(k-1)*(k-1)*binomial(n-1, k-1)*a(n-k))); \\ Seiichi Manyama, Mar 15 2022

Formula

The e.g.f. y(x) satisfies y' = -x*y*exp(-x).
a(n) = Sum_{k=0..n-2} (n-1)*binomial(n-2, k)*(-1)^(n-1-k)*a(k) for n > 0.
Conjecture: a(n) = 0 for only n = 1 and n = 4.
Conjecture: For all p prime, a(p)^2 == 1 (mod p).
Stronger conjecture: For n > 1, a(n) == -1 (mod n) iff n is a prime or 6. - M. F. Hasler, Jun 23 2021
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n-k)*Bell(k)*A106828(n, k). - Mélika Tebni, Sep 21 2021
a(n) = Sum_{k=0..n} (-1)^k*A003725(n-k)*Bell(k)*binomial(n, k). - Mélika Tebni, Mar 21 2022